Periscope graft to extend distal landing zone in ruptured thoracoabdominal aneurysms with short distal necks

Rancic, Z; Pfammatter, T; Lachat, M; Hechelhammer, L; Frauenfelder, T; Veith, FJ; Criado, FJ; Mayer, Dr
PERISCOPE GRAFT TO EXTEND DISTAL LANDING ZONE IN RUPTURED THORACOABDOMINAL ANEURYSMS WITH SHORT DISTAL NECKS

Zoran Rancic, MD, PhD¹; Thomas Pfammatter, MD²; Mario Lachat, MD¹; Lukas Hechelhammer, MD²; Thomas Frauenfelder, MD²; Frank J. Veith, MD³; Frank J. Criado, MD⁴; Mayer Dieter, MD¹

¹ Clinic for Cardiovascular Surgery, University Hospital Zurich, Zurich, CH
² Institute of Diagnostic Radiology, University Hospital Zurich, Zurich, CH
³ The Cleveland Clinic and New York University Medical Center New York, NY, USA and University Hospital Zurich, Zurich, CH
⁴ Vascular Surgery and Endovascular Intervention, Union Memorial Hospital-MedStar Health, Baltimore, Maryland USA

Correspondence to:
Dieter Mayer
Clinic for Cardiovascular Surgery
University Hospital of Zurich
Raemistrasse 100
8091 Zurich, CH
Phone: 0041 44 255 85 37
Fax: 0041 44 255 44 46
e-mail: dieter.mayer@usz.ch
Abstract

Endovascular aneurysm repair of ruptured thoracoabdominal aortic aneurysms may be compromised or even impossible due to short proximal and/or distal necks or landing zones, respectively. Supra-aortic branches may limit the proximal, visceral or renal arteries the distal anchorage of endografts. While solutions have been proposed to overcome the problem of a short proximal neck, no technique has been described that solves the problem of a short distal neck. We present the “periscope technique” which allows extension of the distal landing zone and complete endovascular treatment of ruptured thoracoabdominal aneurysms with short distal necks using devices already stocked in most centers performing EVAR procedures.

keywords: ruptured; aneurysm; aortic; thoracoabdominal; EVAR; TEVAR; stentgraft; periscope; short neck; technique
Branched and fenestrated stentgrafts have been developed to deal with aneurysms extending to or involving aortic main branches. Unfortunately, these devices have to be customized to the patient’s specific anatomy, which is a time consuming procedure. For ruptured or urgent aneurysm treatment, so called “chimney” grafts have been successfully used to treat thoracic or abdominal aortic aneurysms with short proximal necks. We have developed a technique similar to the chimney technique, but where the graft is reversed and blood flow to the branched artery is retrograde; hence the term the “periscope” graft an analogy to an optical periscope. We report here about our initial experience in two patients presenting with contained thoracoabdominal aneurysm rupture that were successfully treated with such periscope grafts.

THE PERISCOPE TECHNIQUE

A percutaneous 8F-Arrow sheath (Arrow International Inc., Reading, PA, USA) is inserted and a 5F-Chuang visceral reverse curve catheter (Cook, Inc., Bloomington, IN, USA) is used to cannulate the target artery or arteries in a retrograde fashion. Over a Rosen wire (Cook, Inc., Bloomington, IN, USA), the bare and/or covered stent is inserted into the target artery. In a parallel fashion, the same procedure is carried out for any other target artery. All bare and/or covered stents remain non-deployed (figure 1A). The (contralateral) arterial access and the common EVAR procedure have been recently described elsewhere. Once the aneurysm exclusion is completed (figure 1B), the stents or stentgrafts to the aortic branch(es) are deployed, so that they are positioned between the stent graft and aortic wall and running caudally and beyond the distal end of the aortic stentgraft (figure 1C). If the length of branch stents or stentgrafts is insufficient, additional stents are used. Finally, the periscope stents or stentgrafts as well as the aortic stentgraft are fully expanded with balloon catheters inflated simultaneously as in the kissing balloon technique.
Patient Experience: To date, two patients have been treated using this periscope technique to resolve a problem with an insufficient distal landing zone due to a short distal neck.

In the first patient, a 58 year old man, thoracoabdominal CT angiography (CTA) revealed an acute ruptured syphilitic thoracoabdominal aneurysm (TAAA) Crawford type III with a maximal diameter of 18.5 cm (figure 2A). The celiac trunk, superior mesenteric artery (SMA), and left renal artery (RA) were occluded. The right pelvic kidney was regularly perfused through an aberrant right RA. The only arterial supply for all abdominal organs was an elongated inferior mesenteric artery (IMA) with mid-grade stenosis at the origin. Since the patient was hemodynamically unstable, the procedure was performed under local anaesthesia with analgosedation. The IMA remained patent after deployment of one Viabahn stentgraft (W. L. Gore and Associates Inc., Flagstaff, AZ, USA), and the right RA flow was preserved with a Palmaz Blue® stent (Cordis Endovascular Warren, NJ, USA) and an additional Viabahn stentgraft. Five stentgrafts (4 TAG®, W. L. Gore and Associates Inc., Flagstaff, AZ, USA, 1 E-vita thoracic, Jotec Inc., Hechingen, Germany) were used for main graft aortic exclusion of the TAAA (figure 2B).

In the second patient, a 40 year old, mentally impaired and obese (BMI 32) man, CTA showed an acute rupture of a TAAA Crawford type I with a maximum diameter of 10.4 cm (figure 3A-B). The SMA and RAs were not involved. Extension of the distal landing zone was obtained by a self-expanding Wallstent ® Endoprosthesis (Boston Scientific, Natick, MA) in the celiac trunk and a Viabahn® stentgraft (W.L. Gore and Associates Inc., Flagstaff, AZ, USA) in the SMA. The ruptured TAAA was excluded with two stentgrafts (1 Valiant Thoracic®, Medtronic Vascular, Santa Rosa, CA, USA, and 1 E-vita thoracic, Jotec Inc., Hechingen, Germany). The procedure was performed under local anaesthesia with analgosedation. Two months later, the aneurysm was completely sealed and shrunk from 78.9 mm to 73.4 mm (figure 3C).
DISCUSSION

Different authors have described similar techniques to extend the proximal landing zone. Greenberg first reported a technique to extend the proximal landing zone across the renal arteries with preservation of renal blood flow. He created a longer neck by deploying a self-expanding stent into the renal artery with a longer segment “running parallel to the aortic wall” between the aortic wall and stentgraft. Later, Larzon described “the top fenestrating technique” in a series of 24 patients, where the covered renal arteries, left common carotid artery or the left subclavian artery have been reopened by preplaced stents. Larzon and Hiramoto reported similar techniques of branch stenting to preserve blood flow to the supraaortic trunks. Finally, Malina proposed the term “chimney graft” when covered stent devices were employed in a similar fashion.

Up to now, there is to our knowledge no report of such a technique applied to extend the distal landing zone. We have used our periscope technique in a similar way to those described to extend the proximal landing zone as a way of allowing endovascular treatment to patients with ruptured TAAAs having inadequate distal landing zones. This has enabled us to treat highly unstable patients in whom open surgery was not expected to be successful.

The main difference of such branch stent and/or stentgrafts used in the distal neck position is that blood flow to the branched artery is retrograde. Our limited experience, with the periscope technique is so far promising, as it allowed maintenance of blood flow to the branched vessels, without interfering with aneurysm sealing.

There are of course some issues with the periscope technique. Which kind of stent or stent-graft should be used? We believe that covered stents are superior to bare stents, as bare stents do allow blood flow through the struts and therefore may be more prone to produce type Ib endoleaks, as we have experienced. Regarding covered stents, we prefer Viabahn stentgrafts
as they are highly flexible and available in different sizes and lengths. Another issue is that of aneurysm sealing. In our limited experience, sealing was not achieved immediately after aortic stentgraft deployment, but required several days. There are several possible explanations for this. Firstly, the space in-between the branch grafts and aortic stent graft does not occlude immediately, allowing some residual blood flow (i.e. type Ib endoleak) inside the aneurysm. This was confirmed with on-table angiography. Secondly, coagulation in patients presenting with aortic rupture is often profoundly altered, delaying in-sac thrombosis. Finally, infolding of the aortic stentgraft induced by the branch grafts might occur. Nevertheless, in our two cases our damage control periscope procedure stopped blood loss outside the aorta. Moreover, CT scan revealed complete sac thrombosis within a few days and aneurysm shrinkage two months later. Another issue is that the grafts within the branches could compress the aortic stentgraft or that the aortic stentgraft could compress the grafts to the target branches. This could result in a blood flow reduction to the branches and/or the distal extremities. We experienced such a situation in our first patient. Since the pressure gradient from the narrowed distal part of the aortic stentgraft graft was not significant, we accepted it. However, we recommend consideration of performing additional stenting in the branch grafts and of performing an axillofemoral bypass to increase blood flow to the branches and lower extremities. We also recommend performing selective pressure measurements in the distal aortic and branch lumens to exclude important flow restriction.

CONCLUSION

Our experience in two patients with ruptured thoracoabdominal aortic aneurysms extending to or involving the renal and visceral arteries showed that the periscope technique was successful and effective in extending the distal aortic landing zone while maintaining blood flow to the aortic branches. Moreover, complete aneurysm exclusion and shrinking was achieved in both cases. This technique can be performed with devices in stock in most institutions doing
EVAR and could be useful in the treatment of some patients with thoracoabdominal aneurysm rupture particularly when open surgery is deemed to be of high risk.
Reference List

Figures

Figure 1. The periscope technique. 1A, the stentgrafts to the target aortic branches and the aortic endograft are positioned but still not deployed. 1B, the aortic endograft is deployed first. 1C, all stentgrafts are deployed and balloon dilated, allowing retrograde flow to the target arteries (red arrows); the branch stentgrafts run coaxially between the aortic endograft and the aortic wall (small picture).

Figure 2. 2A, ruptured thoracoabdominal aortic aneurysm (case 1, sagital view). the inferior mesenteric artery (IMA) was responsible for the perfusion of all visceral organs. The right aberrant renal artery (RRA) supplied the single right pelvic kidney. 2B, postoperative 2D reconstruction after complete endovascular exclusion of the ruptured TAAA. The two periscope grafts to the right pelvic kidney (arrowhead) and inferior mesenteric artery (arrow) are patent.

Figure 3. 3A, ruptured thoracoabdominal aortic aneurysm (case 2, 3D reconstruction). 3B, rupture site, maximal aortic diameter 78.9 mm. 3C, two months after the emergent repair, the aneurysm is completely excluded and the maximal aortic diameter diminished to 73.4 mm.
Journal of Vascular Surgery
Author Role, Originality, and Competition of Interest Form

Manuscript Title PERISCOPE GRAFT TO EXTEND DISTAL LANDING ZONE IN RUPTURED THORACOABDOMINAL ANEURYSMS WITH SHORT DISTAL NECKS

By submitting this form, the corresponding author acknowledges that each author has read and agrees with 1) the statement on authorship responsibility and contribution to authorship and 2) the competition of interest disclosure. If the manuscript is accepted for publication each author will be required to sign a form certifying the accuracy of this information. The name of the corresponding author and the author to receive reprint requests should be indicated in the information below

Originality of Research

The authors certify that this manuscript is original, has been written by the stated authors, has not been published previously, and is not under consideration for publication by another journal. If parts of the work or patients included in this manuscript have been previously published, the authors are required to disclose this information to the Editors.

Authorship Responsibility and Contributions to Authorship

By submitting this manuscript, each author certifies that they have made a direct and substantial contribution to the work reported in the manuscript by participating in each of the following three areas: (1) conceiving and designing the study; or collecting the data; or analyzing and interpreting the data; (2) writing the manuscript or providing critical revisions that are important for the intellectual content; and (3) approving the final version of the manuscript. They have participated to a sufficient degree to take public responsibility for the work and believe that the manuscript describes truthful facts. They declare that they shall produce the data on which the manuscript is based for examination by the editors or their assignees, should it be requested. Each author also agrees to allow the corresponding author to make decisions regarding submission of the manuscript to the Journal, changes to galley proofs, and prepublication release of information in the manuscript to the media, federal agencies, or both.

Generally, the maximum number of expected authors for a clinical or basic science manuscript is 6, and for a case report, technical note or vascular image is 4. The Editors request that additional authors be carefully examined with respect to the authorship criteria listed above, and suggest that some might better be acknowledged than listed as authors. Further, the Editors request that authors beyond this expected number be specifically justified in the details section of the electronic submission.

In the table below, please designate the substantive contribution(s) of each author. For more information, see the “Uniform Requirements for Manuscripts Submitted to Biomedical Journals: Writing and Editing for Biomedical Publication” (http://www.icmje.org/index.html), section II.A on Authorship.

<table>
<thead>
<tr>
<th>Author Name</th>
<th>Conception and design</th>
<th>Analysis and interpretation</th>
<th>Data Collection</th>
<th>Writing the article</th>
<th>Critical revision of the article</th>
<th>Final approval of the article</th>
<th>Statistical analysis</th>
<th>Obtaining funding</th>
<th>Overall Responsibility</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zoran Rancic</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thomas Pfammatter</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mario Lachat</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Competition of Interest Disclosure

The Journal requires that each author disclose any sponsor that provided financial support for the study. Such a statement should indicate the details of corporate funding, as well as any involvement by a sponsor of this study in the design; collection, analysis, and interpretation of data; manuscript writing; or the decision to submit the manuscript for publication. This information must be included below in the Competition of Interest statement.

In addition, the Journal requires that each author disclose any personal financial arrangements that might be perceived as a competitive interest with respect to this study. Specifically, for each author:

1. Has the author received a financial contribution from a company or organization that might benefit (or lose) financially from the results, conclusions or discussion presented in the paper/letter? Examples include:
 - royalties
 - patents (or patents pending)
 - fees for consulting
 - fees for speaking when organized by a corporate sponsored speakers’ bureau
 - funds for a member of the author’s staff or family

2. Does the author own stocks, shares or have options in a company or organization that might benefit (or lose) financially from the results, conclusion or discussion presented in the paper/letter?

3. Does the author have any other competing financial interests that should be disclosed?

In response to these questions, you must check one of the boxes below:

- **No** The authors have no competing interests to declare. Please print “No competing interest declared” with the article

- **Yes** The authors do have competing interests to declare. Please print the following statement with the article:

<table>
<thead>
<tr>
<th>Lukas Hechelhammer</th>
<th>X</th>
<th>X</th>
<th>X</th>
<th>X</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thomas Frauenfelder</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Frank J Veith</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Frank J Criado</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Dieter Mayer</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>
Example: “KR has been paid a consulting fee by XYZ Company and is on their speakers bureau; PW has shares in the company; RC received funding for a research assistant from the XYZ Company. The study was funded by corporation XYZ.”

Although the above language emphasizes financial disclosure, each author may choose to disclose other potential conflicts which could include an academic association or antagonism with someone whose interest might be affected by the publication, membership in a special interest group whose interests might be affected by the paper, or other strong convictions that might have affected what was written.

Clinical Trial Registration

Prospective clinical trials with a control group, and any industry-sponsored clinical trials must be registered at www.clinicaltrials.gov, and authors must provide the trial registration number upon submission. Further information is available in “Requirement for registration of clinical trials” J Vasc Surg 2007;45:1.

- **No** This study does not meet the above requirements.

- **Yes** This study meets the above requirements and the registration number is______________________.

Address for Reprints

Reprints will ___ will not _x_ be available. If available, reprint requests should be addressed to:

By submitting this manuscript, each of the authors indicate that they had full access to all of the data in this study and take complete responsibility for the integrity of the data and the accuracy of the data analysis.

As corresponding author, I certify that the above information is correct, and has been reviewed by each author.

Name _Dieter Mayer, MD______________________________
Manuscript Title **PERISCOPE GRAFT TO EXTEND DISTAL LANDING ZONE IN RUPTURED THORACOABDOMINAL ANEURYSMS WITH SHORT DISTAL NECKS**

Corresponding Author Dieter Mayer, MD

The Journal of Vascular Surgery requests that authors provide the names and addresses of three potential reviewers for submitted manuscripts. The suggested reviewers should possess no conflict of interest, i.e., a suggested reviewer should not be a close personal friend, an individual from the same institution, or an individual with whom any of the authors has collaborated. Because reviewers are asked to decline to review any application with which they may have a conflict of interest, suggesting suitable expert reviewers will minimize delays. Provision of a correct e-mail address is essential.

Requested Reviewer 1

Roger Greenhalgh, Prof.

<table>
<thead>
<tr>
<th>Name</th>
<th>London</th>
</tr>
</thead>
<tbody>
<tr>
<td>Address</td>
<td>City</td>
</tr>
<tr>
<td>Phone</td>
<td>Fax</td>
</tr>
<tr>
<td>r.greenhalgh@bibamedical.com</td>
<td></td>
</tr>
</tbody>
</table>

Requested Reviewer 2

Jean-Pierre Becquemin, Prof

<table>
<thead>
<tr>
<th>Name</th>
<th>Paris</th>
</tr>
</thead>
<tbody>
<tr>
<td>Address</td>
<td>City</td>
</tr>
<tr>
<td>Phone</td>
<td>Fax</td>
</tr>
<tr>
<td>jpbecquemin@hotmail.com</td>
<td></td>
</tr>
</tbody>
</table>

Requested Reviewer 3

Thomas Larzon, MD

<table>
<thead>
<tr>
<th>Name</th>
<th>Orebro</th>
</tr>
</thead>
<tbody>
<tr>
<td>Address</td>
<td>City</td>
</tr>
</tbody>
</table>
Unsuitable Reviewers
The authors may also include the names of individuals who would not be suitable reviewers because of potential professional or personal conflicts of interest. Each name should be accompanied by a brief description of the potential conflict of interest.

<table>
<thead>
<tr>
<th>Name</th>
<th>Conflict</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Figure 2

Click here to download high resolution image