UZH-Logo

Degradation of human exonuclease 1b upon DNA synthesis inhibition


El-Shemerly, M; Janscak, P; Hess, D; Jiricny, J; Ferrari, S (2005). Degradation of human exonuclease 1b upon DNA synthesis inhibition. Cancer Research, 65(9):3604-3609.

Abstract

In response to DNA damage, signaling pathways are triggered that either block the cell division cycle at defined transitions (G1-S and G2-M) or slow down progression through the S phase. Nucleases play important roles in DNA synthesis, recombination, repair, and apoptosis. In this study, we have examined the regulation of human exonuclease 1 (hEXO1b). The endogenous hEXO1b protein was only detected upon enrichment by immunoprecipitation. We found that hEXO1b was constantly expressed throughout the cell cycle. However, treatment of cells with agents that cause arrest of DNA replication led to rapid degradation of hEXO1b. This effect was fully reversed upon removal of the block. Analysis of synchronized cells showed that degradation of hEXO1b during the S phase was strictly dependent on DNA synthesis inhibition. DNA damage caused by UV-C radiation, ionizing radiation, cisplatin, or the alkylating agent N-methyl-N'-nitro-N-nitrosoguanidine did not affect hEXO1b stability. We show that hEXO1b was phosphorylated in response to inhibition of DNA synthesis and that phosphorylation coincided with rapid protein degradation through ubiquitin-proteasome pathways. Our data support the evidence that control of exonuclease 1 activity may be critical for the maintenance of stalled replication forks.

In response to DNA damage, signaling pathways are triggered that either block the cell division cycle at defined transitions (G1-S and G2-M) or slow down progression through the S phase. Nucleases play important roles in DNA synthesis, recombination, repair, and apoptosis. In this study, we have examined the regulation of human exonuclease 1 (hEXO1b). The endogenous hEXO1b protein was only detected upon enrichment by immunoprecipitation. We found that hEXO1b was constantly expressed throughout the cell cycle. However, treatment of cells with agents that cause arrest of DNA replication led to rapid degradation of hEXO1b. This effect was fully reversed upon removal of the block. Analysis of synchronized cells showed that degradation of hEXO1b during the S phase was strictly dependent on DNA synthesis inhibition. DNA damage caused by UV-C radiation, ionizing radiation, cisplatin, or the alkylating agent N-methyl-N'-nitro-N-nitrosoguanidine did not affect hEXO1b stability. We show that hEXO1b was phosphorylated in response to inhibition of DNA synthesis and that phosphorylation coincided with rapid protein degradation through ubiquitin-proteasome pathways. Our data support the evidence that control of exonuclease 1 activity may be critical for the maintenance of stalled replication forks.

Citations

26 citations in Web of Science®
29 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

21 downloads since deposited on 09 Jul 2010
16 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Institute of Molecular Cancer Research
07 Faculty of Science > Institute of Molecular Cancer Research
Dewey Decimal Classification:570 Life sciences; biology
Language:English
Date:2005
Deposited On:09 Jul 2010 12:31
Last Modified:05 Apr 2016 14:09
Publisher:American Association for Cancer Research
ISSN:0008-5472
Publisher DOI:10.1158/0008-5472.CAN-04-4069
PubMed ID:15867354
Permanent URL: http://doi.org/10.5167/uzh-34240

Download

[img]
Preview
Filetype: PDF
Size: 326kB
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations