UZH-Logo

Maintenance Infos

The secret of dimethyl sulfoxide-water mixtures. A quantum chemical study of 1DMSO-nwater clusters


Kirchner, B; Reiher, M (2002). The secret of dimethyl sulfoxide-water mixtures. A quantum chemical study of 1DMSO-nwater clusters. Journal of the American Chemical Society, 124(21):6206-6215.

Abstract

DMSO-water mixtures exhibit a marked freezing point depression, reaching close to 60 K at n(DMSO) = 0.33. The phase diagram indicates that stable DMSO-water clusters may be responsible for this phenomenon, Using time-independent quantum chemical methods, we investigate possible candidates for stable supermolecules at mole fractions n(DMSO) = 0.25 and 0.33. The model clusters are built by adding various numbers of water molecules to a single DMSO molecule. Structures and interaction energetics are discussed in the light of experimental and theoretical results from the literature. A comparison with results from molecular dynamics simulations is of particular interest. Our optimized structures are spatially very different from those previously identified through MD simulations. To identify the structural patterns characterizing the clusters, we classify them on the basis of hydrogen-acceptor interactions. These are well separated on an interaction energy scale. For the hydrophobic interactions of the methyl groups with water, attractive interactions of up to 8 kJ/mol are found. In forming clusters corresponding to a range of different mole fractions, up to four water molecules are added to each DMSO molecule. This corresponds to a rough local model of solvation. Examination of the trends in the interactions indicates that the methyl-water interaction becomes more important upon solvation. Finally, we investigate how the clusters interact and attempt to explain which role is played by the various structures and their intercluster interaction modes in the freezing behavior of DMSO-water.

DMSO-water mixtures exhibit a marked freezing point depression, reaching close to 60 K at n(DMSO) = 0.33. The phase diagram indicates that stable DMSO-water clusters may be responsible for this phenomenon, Using time-independent quantum chemical methods, we investigate possible candidates for stable supermolecules at mole fractions n(DMSO) = 0.25 and 0.33. The model clusters are built by adding various numbers of water molecules to a single DMSO molecule. Structures and interaction energetics are discussed in the light of experimental and theoretical results from the literature. A comparison with results from molecular dynamics simulations is of particular interest. Our optimized structures are spatially very different from those previously identified through MD simulations. To identify the structural patterns characterizing the clusters, we classify them on the basis of hydrogen-acceptor interactions. These are well separated on an interaction energy scale. For the hydrophobic interactions of the methyl groups with water, attractive interactions of up to 8 kJ/mol are found. In forming clusters corresponding to a range of different mole fractions, up to four water molecules are added to each DMSO molecule. This corresponds to a rough local model of solvation. Examination of the trends in the interactions indicates that the methyl-water interaction becomes more important upon solvation. Finally, we investigate how the clusters interact and attempt to explain which role is played by the various structures and their intercluster interaction modes in the freezing behavior of DMSO-water.

Citations

95 citations in Web of Science®
96 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

1 download since deposited on 27 Mar 2009
0 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Department of Chemistry
Dewey Decimal Classification:540 Chemistry
Language:English
Date:2002
Deposited On:27 Mar 2009 07:22
Last Modified:05 Apr 2016 12:27
Publisher:American Chemical Society
ISSN:0002-7863
Publisher DOI:10.1021/ja017703g
Permanent URL: http://doi.org/10.5167/uzh-3432

Download

[img]
Filetype: PDF - Registered users only
Size: 205kB
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations