Quick Search:

uzh logo
Browse by:
bullet
bullet
bullet
bullet

Zurich Open Repository and Archive 

Permanent URL to this publication: http://dx.doi.org/10.5167/uzh-34367

Kuhlen, M; Weiner, N; Diemand, J; Madau, P; Moore, B; Potter, D; Stadel, J; Zemp, M (2010). Dark matter direct detection with non-Maxwellian velocity structure. Journal of Cosmology and Astroparticle Physics, 2010(2):30.

[img]
Preview
Accepted Version
PDF
3996Kb

Abstract

The velocity distribution function of dark matter particles is expected to show significant departures from a Maxwell-Boltzmann distribution. This can have profound effects on the predicted dark matter - nucleon scattering rates in direct detection experiments, especially for dark matter models in which the scattering is sensitive to the high velocity tail of the distribution, such as inelastic dark matter (iDM) or light (few GeV) dark matter (LDM), and for experiments that require high energy recoil events, such as many directionally sensitive experiments. Here we determine the velocity distribution functions from two of the highest resolution numerical simulations of Galactic dark matter structure (Via Lactea II and GHALO), and study the effects for these scenarios. For directional detection, we find that the observed departures from Maxwell-Boltzmann increase the contrast of the signal and change the typical direction of incoming DM particles. For iDM, the expected signals at direct detection experiments are changed dramatically: the annual modulation can be enhanced by more than a factor two, and the relative rates of DAMA compared to CDMS can change by an order of magnitude, while those compared to CRESST can change by a factor of two. The spectrum of the signal can also change dramatically, with many features arising due to substructure. For LDM the spectral effects are smaller, but changes do arise that improve the compatibility with existing experiments. We find that the phase of the modulation can depend upon energy, which would help discriminate against background should it be found.

Kuhlen, Michael; Weiner, Neal; Diemand, Jürg; Madau, Piero; Moore, Ben; Potter, Doug; Stadel, Joachim; Zemp, Marcel

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Institute of Theoretical Physics
DDC:530 Physics
Language:English
Date:February 2010
Deposited On:03 Mar 2011 16:43
Last Modified:10 Feb 2014 05:25
Publisher:Institute of Physics Publishing
ISSN:1475-7516
Publisher DOI:10.1088/1475-7516/2010/02/030
Related URLs:http://arxiv.org/abs/0912.2358v1
Citations:Web of Science®. Times Cited: 70
Google Scholar™

Users (please log in): suggest update or correction for this item

Repository Staff Only: item control page