UZH-Logo

Maintenance Infos

Precision cluster mass determination from weak lensing


Mandelbaum, R; Seljak, U; Baldauf, T; Smith, R E (2010). Precision cluster mass determination from weak lensing. Monthly Notices of the Royal Astronomical Society, 405(3):2078-2102.

Abstract

Weak gravitational lensing has been used extensively in the past decade to constrain the masses of galaxy clusters, and is the most promising observational technique for providing the mass calibration necessary for precision cosmology with clusters. There are several challenges in estimating cluster masses, particularly (a) the sensitivity to astrophysical effects and observational systematics that modify the signal relative to the theoretical expectations, and (b) biases that can arise due to assumptions in the mass estimation method, such as the assumed radial profile of the cluster. All of these challenges are more problematic in the inner regions of the cluster, suggesting that their influence would ideally be suppressed for the purpose of mass estimation. However, at any given radius the differential surface density measured by lensing is sensitive to all mass within that radius, and the corrupted signal from the inner parts is spread out to all scales. We develop a new statistic Υ(RR0) that is ideal for estimation of cluster masses because it completely eliminates mass contributions below a chosen scale (which we suggest should be about 20 per cent of the virial radius), and thus reduces sensitivity to systematic and astrophysical effects. We use simulated and analytical profiles including shape noise to quantify systematic biases on the estimated masses for several standard methods of mass estimation, finding that these can lead to significant mass biases that range from 10 to over 50 per cent. The mass uncertainties when using the new statistic Υ(RR0) are reduced by up to a factor of 10 relative to the standard methods, while only moderately increasing the statistical errors. This new method of mass estimation will enable a higher level of precision in future science work with weak lensing mass estimates for galaxy clusters.

Weak gravitational lensing has been used extensively in the past decade to constrain the masses of galaxy clusters, and is the most promising observational technique for providing the mass calibration necessary for precision cosmology with clusters. There are several challenges in estimating cluster masses, particularly (a) the sensitivity to astrophysical effects and observational systematics that modify the signal relative to the theoretical expectations, and (b) biases that can arise due to assumptions in the mass estimation method, such as the assumed radial profile of the cluster. All of these challenges are more problematic in the inner regions of the cluster, suggesting that their influence would ideally be suppressed for the purpose of mass estimation. However, at any given radius the differential surface density measured by lensing is sensitive to all mass within that radius, and the corrupted signal from the inner parts is spread out to all scales. We develop a new statistic Υ(RR0) that is ideal for estimation of cluster masses because it completely eliminates mass contributions below a chosen scale (which we suggest should be about 20 per cent of the virial radius), and thus reduces sensitivity to systematic and astrophysical effects. We use simulated and analytical profiles including shape noise to quantify systematic biases on the estimated masses for several standard methods of mass estimation, finding that these can lead to significant mass biases that range from 10 to over 50 per cent. The mass uncertainties when using the new statistic Υ(RR0) are reduced by up to a factor of 10 relative to the standard methods, while only moderately increasing the statistical errors. This new method of mass estimation will enable a higher level of precision in future science work with weak lensing mass estimates for galaxy clusters.

Citations

36 citations in Web of Science®
33 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

107 downloads since deposited on 28 Feb 2011
23 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Institute for Computational Science
Dewey Decimal Classification:530 Physics
Language:English
Date:May 2010
Deposited On:28 Feb 2011 16:17
Last Modified:05 Apr 2016 14:09
Publisher:Wiley-Blackwell
ISSN:0035-8711
Additional Information:The definitive version is available at www.blackwell-synergy.com
Publisher DOI:10.1111/j.1365-2966.2010.16619.x
Related URLs:http://arxiv.org/abs/0911.4972
Permanent URL: http://doi.org/10.5167/uzh-34370

Download

[img]
Preview
Content: Accepted Version
Filetype: PDF (Accepted manuscript, Version 2)
Size: 717kB
View at publisher
[img]
Preview
Content: Accepted Version
Filetype: PDF (Accepted manuscript, Version 1)
Size: 669kB

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations