Quick Search:

uzh logo
Browse by:
bullet
bullet
bullet
bullet

Zurich Open Repository and Archive 

Governato, F; Brook, C; Mayer, L; Brooks, A; Rhee, G; Wadsley, J; Jonsson, P; Willman, B; Stinson, G; Quinn, T; Madau, P (2010). Bulgeless dwarf galaxies and dark matter cores from supernova-driven outflows. Nature, 463(7278):203-206.

Full text not available from this repository.

Abstract

For almost two decades the properties of `dwarf' galaxies have challenged the cold dark matter (CDM) model of galaxy formation. Most observed dwarf galaxies consist of a rotating stellar disk embedded in a massive dark-matter halo with a near-constant-density core. Models based on the dominance of CDM, however, invariably form galaxies with dense spheroidal stellar bulges and steep central dark-matter profiles, because low-angular-momentum baryons and dark matter sink to the centres of galaxies through accretion and repeated mergers. Processes that decrease the central density of CDM halos have been identified, but have not yet reconciled theory with observations of present-day dwarfs. This failure is potentially catastrophic for the CDM model, possibly requiring a different dark-matter particle candidate. Here we report hydrodynamical simulations (in a framework assuming the presence of CDM and a cosmological constant) in which the inhomogeneous interstellar medium is resolved. Strong outflows from supernovae remove low-angular-momentum gas, which inhibits the formation of bulges and decreases the dark-matter density to less than half of what it would otherwise be within the central kiloparsec. The analogues of dwarf galaxies-bulgeless and with shallow central dark-matter profiles-arise naturally in these simulations.

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Institute for Computational Science
DDC:530 Physics
Language:English
Date:January 2010
Deposited On:02 Mar 2011 18:30
Last Modified:27 Nov 2013 21:23
Publisher:Nature Publishing Group
ISSN:0028-0836
Publisher DOI:10.1038/nature08640
PubMed ID:20075915
Citations:Web of Science®. Times Cited: 300
Google Scholar™
Scopus®. Citation Count: 313

Users (please log in): suggest update or correction for this item

Repository Staff Only: item control page