Quick Search:

uzh logo
Browse by:

Zurich Open Repository and Archive

Maintenance: Tuesday, July the 26th 2016, 07:00-10:00

ZORA's new graphical user interface will be relaunched (For further infos watch out slideshow ZORA: Neues Look & Feel). There will be short interrupts on ZORA Service between 07:00am and 10:00 am. Please be patient.

Permanent URL to this publication: http://dx.doi.org/10.5167/uzh-34416

Guillet, T; Teyssier, R; Colombi, S (2010). The effect of baryons on the variance and the skewness of the mass distribution in the Universe at small scales. Monthly Notices of the Royal Astronomical Society, 405(1):525-534.

Accepted Version
PDF (Accepted manuscript, Version 3)
View at publisher
Accepted Version
PDF (Accepted manuscript, Version 2)
Accepted Version
PDF (Accepted manuscript, Version 1)


We study the dissipative effects of baryon physics on cosmic statistics at small scales using a cosmological simulation of a (50Mpch-1)3 volume of universe. The MareNostrum simulation was performed using the adaptive mesh refinement (AMR) code RAMSES, and includes most of the physical ingredients which are part of the current theory of galaxy formation, such as metal-dependent cooling and UV heating, subgrid modelling of the interstellar medium, star formation and supernova feedback. We reran the same initial conditions for a dark matter only universe, as a reference point for baryon-free cosmic statistics. In this paper, we present the measured small-scale amplification of σ2 and S3 due to baryonic physics and their interpretation in the framework of the halo model. As shown in recent studies, the effect of baryons on the matter power spectrum can be accounted for at scales k <~ 10hMpc-1 by modifying the halo concentration parameter. We propose to extend this result by using a composite halo profile, which is a linear combination of a Navarro, Frenk and White profile for the dark matter component and an exponential disc profile mimicking the baryonic component at the heart of the halo. This halo profile form is physically motivated and depends on two parameters, the mass fraction f d of baryons in the disc and the ratio λd of the disc's characteristic scale to the halo's virial radius. We find this composite profile to reproduce both the small-scale variance and skewness boosts measured in the simulation up to k ~ 102hMpc-1 for physically meaningful values of the parameters f d and λd. Although simulations like the one presented here usually suffer from various problems when compared to observations, our modified halo model could be used as a fitting model to improve the determination of cosmological parameters from weak lensing convergence spectra and skewness measurements.


35 citations in Web of Science®
34 citations in Scopus®
Google Scholar™



69 downloads since deposited on 02 Mar 2011
7 downloads since 12 months

Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Institute for Computational Science
Dewey Decimal Classification:530 Physics
Date:June 2010
Deposited On:02 Mar 2011 15:12
Last Modified:05 Apr 2016 14:09
Additional Information:The definitive version is available at www.blackwell-synergy.com
Publisher DOI:10.1111/j.1365-2966.2010.16466.x
Related URLs:http://arxiv.org/abs/0905.2615

Users (please log in): suggest update or correction for this item

Repository Staff Only: item control page