Quick Search:

uzh logo
Browse by:
bullet
bullet
bullet
bullet

Zurich Open Repository and Archive 

Boss, A; Kolb, A; Hofmann, M; Bisdas, S; Nägele, T; Ernemann, U; Stegger, L; Rossi, C; Schlemmer, H P; Pfannenberg, C; Reimold, M; Claussen, C D; Pichler, B J; Klose, U (2010). Diffusion tensor imaging in a human PET/MR hybrid system. Investigative Radiology, 45(5):270-274.

Full text not available from this repository.

Abstract

PURPOSE: The aim of this study was to test and demonstrate the feasibility of diffusion tensor imaging (DTI) with a hybrid positron emission tomography (PET)/magnetic resonance imaging system for simultaneous PET and magnetic resonance (MR) data acquisition. MATERIALS AND METHODS: All measurements were performed with a prototype hybrid PET/MR scanner dedicated for brain and head imaging. The PET scanner, which is inserted into a conventional 3.0-Tesla high field MR imager equipped with a transmit/receive birdcage head coil, consists of 192 block detectors with a matrix of 12 x 12 lutetium oxyorthosilicate scintillation crystals combined with MR-compatible 3 x 3 avalanche photodiode arrays. In 7 volunteers and 4 patients with brain tumors, DTI was performed during simultaneous PET data readout applying a diffusion weighted echo planar sequence (12 noncollinear directions, echo time (TE)/repetition time (TR) 98 ms/5300 ms, b-value 800 s/mm). Image quality and accuracy of DTI were assessed in comparison with DTI images acquired after removal of the PET insert. RESULTS: The diffusion images showed good image quality in all volunteers regardless of simultaneous PET data readout or after removal of the PET scanner; however, significantly (P < 0.01) stronger rim artifacts were found in fractional anisotropy images computed from DTI images recorded during simultaneous PET acquisition, demonstrating higher eddy-current effects. In region of interest analysis, no notable differences were found in the computation of the direction of the principal eigenvector (P > 0.05) and fractional anisotropy values (P > 0.05). In the assessment of pathologies, in all 4 patients PET and DTI provided important clinical information in addition to conventional magnetic resonance imaging. CONCLUSION: Diffusion tensor imaging may be combined with simultaneous PET data acquisition, offering additional important morphologic and functional information for treatment planning in patients with brain tumors.

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > University Hospital Zurich > Clinic for Diagnostic and Interventional Radiology
DDC:610 Medicine & health
Language:English
Date:May 2010
Deposited On:11 Jun 2010 09:23
Last Modified:27 Nov 2013 19:10
Publisher:Lippincott Wiliams & Wilkins
ISSN:0020-9996
Publisher DOI:10.1097/RLI.0b013e3181dc3671
PubMed ID:20351651
Citations:Web of Science®. Times Cited: 28
Google Scholar™
Scopus®. Citation Count: 30

Users (please log in): suggest update or correction for this item

Repository Staff Only: item control page