UZH-Logo

Optimization of the culturing conditions of human umbilical cord blood-derived endothelial colony-forming cells under xeno-free conditions applying a transcriptomic approach


Zeisberger, S M; Zoller, S; Riegel, M; Chen, S; Krenning, G; Harmsen, M C; Sachinidis, A; Zisch, A H (2010). Optimization of the culturing conditions of human umbilical cord blood-derived endothelial colony-forming cells under xeno-free conditions applying a transcriptomic approach. Genes to Cells, 15(7):671-687.

Abstract

Establishment of fetal bovine serum (FBS)-free cell culture conditions is essential for transplantation therapies. Blood-derived endothelial colony-forming cells (ECFCs) are potential candidates for regenerative medicine applications. ECFCs were isolated from term umbilical cord blood units and characterized by flow cytometry, capillary formation and responsiveness to cytokines. ECFCs were expanded under standard, FBS-containing endothelial medium, or transferred to chemically defined endothelial media without FBS. Microarray expression profiling was applied to compare the transcriptome profiles in FBS-containing versus FBS-free culture. ECFC outgrowth in standard medium was successful in 92% of cord blood units. The karyotype of expanded ECFCs remained normal. Without FBS, ECFC initiation and expansion failed. Modest proliferation, changes in cell morphology and organization and cell death have been observed after passaging. Gene ontology analysis revealed a broad down-regulation of genes involved in cell cycle progression and up-regulation of genes involved in stress response and apoptosis. Interestingly, genes participating in lipid biosynthesis were markedly up-regulated. Detection of several endothelial cell-specific marker genes showed the maintenance of the endothelial cell characteristics during serum-free culture. Although ECFCs maintain their endothelial characteristics during serum-free culturing, they could not be expanded. Additional supply of FBS-free media with lipid concentrates might increase the ECFC survival.

Establishment of fetal bovine serum (FBS)-free cell culture conditions is essential for transplantation therapies. Blood-derived endothelial colony-forming cells (ECFCs) are potential candidates for regenerative medicine applications. ECFCs were isolated from term umbilical cord blood units and characterized by flow cytometry, capillary formation and responsiveness to cytokines. ECFCs were expanded under standard, FBS-containing endothelial medium, or transferred to chemically defined endothelial media without FBS. Microarray expression profiling was applied to compare the transcriptome profiles in FBS-containing versus FBS-free culture. ECFC outgrowth in standard medium was successful in 92% of cord blood units. The karyotype of expanded ECFCs remained normal. Without FBS, ECFC initiation and expansion failed. Modest proliferation, changes in cell morphology and organization and cell death have been observed after passaging. Gene ontology analysis revealed a broad down-regulation of genes involved in cell cycle progression and up-regulation of genes involved in stress response and apoptosis. Interestingly, genes participating in lipid biosynthesis were markedly up-regulated. Detection of several endothelial cell-specific marker genes showed the maintenance of the endothelial cell characteristics during serum-free culture. Although ECFCs maintain their endothelial characteristics during serum-free culturing, they could not be expanded. Additional supply of FBS-free media with lipid concentrates might increase the ECFC survival.

Citations

3 citations in Web of Science®
7 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

1 download since deposited on 05 Jul 2010
1 download since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > University Hospital Zurich > Division of Surgical Research
04 Faculty of Medicine > University Hospital Zurich > Clinic for Obstetrics
04 Faculty of Medicine > Institute of Medical Genetics
04 Faculty of Medicine > Functional Genomics Center Zurich
08 University Research Priority Programs > Systems Biology / Functional Genomics
Dewey Decimal Classification:570 Life sciences; biology
610 Medicine & health
Language:English
Date:June 2010
Deposited On:05 Jul 2010 16:15
Last Modified:05 Apr 2016 14:09
Publisher:Wiley-Blackwell
ISSN:1356-9597
Free access at:Publisher DOI. An embargo period may apply.
Publisher DOI:10.1111/j.1365-2443.2010.01409.x
PubMed ID:20497237
Permanent URL: http://doi.org/10.5167/uzh-34482

Download

[img]Content: Published Version
Filetype: PDF - Registered users only
Size: 886kB
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations