UZH-Logo

Maintenance Infos

Proton transfer in imidazole-based molecular crystals


Iannuzzi, M (2006). Proton transfer in imidazole-based molecular crystals. Journal of Chemical Physics, 124(20):204710.

Abstract

Heterocycles' aggregates show rather good proton conductivity. In particular, condensed structures formed by imidazole rings that are held together by polymeric chains have attracted some interest as possible candidate materials for fuel cell membranes. However, the details of the proton diffusion process could not be resolved by means of experimental measurements because of the fast rearrangement of the structure after each proton exchange. In this work, we report in detail the results of ab initio molecular dynamics calculations, which were briefly presented in a previous Letter [M. Iannuzzi and M. Parrinello, Phys. Rev. Lett. 93, 025901 (2004)]. The conformational changes associated with the diffusion of protons in model crystalline structures containing chains of imidazole rings are described in the framework of an atomistic approach. In particular, the bonding pattern characterizing the structure of imidazole-2-ethylene-oxide doped by an excess proton is also studied through the calculation of the H-1 NMR chemical shifts. The unresolved resonances appearing in the experimental spectra could be associated with specific structural features, in connection with the fluctuating hydrogen bonding. The analysis of the distortions that induce or are induced by the mobility of the protons offers some new hints for the engineering of new proton conducting materials.

Abstract

Heterocycles' aggregates show rather good proton conductivity. In particular, condensed structures formed by imidazole rings that are held together by polymeric chains have attracted some interest as possible candidate materials for fuel cell membranes. However, the details of the proton diffusion process could not be resolved by means of experimental measurements because of the fast rearrangement of the structure after each proton exchange. In this work, we report in detail the results of ab initio molecular dynamics calculations, which were briefly presented in a previous Letter [M. Iannuzzi and M. Parrinello, Phys. Rev. Lett. 93, 025901 (2004)]. The conformational changes associated with the diffusion of protons in model crystalline structures containing chains of imidazole rings are described in the framework of an atomistic approach. In particular, the bonding pattern characterizing the structure of imidazole-2-ethylene-oxide doped by an excess proton is also studied through the calculation of the H-1 NMR chemical shifts. The unresolved resonances appearing in the experimental spectra could be associated with specific structural features, in connection with the fluctuating hydrogen bonding. The analysis of the distortions that induce or are induced by the mobility of the protons offers some new hints for the engineering of new proton conducting materials.

Citations

27 citations in Web of Science®
27 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

12 downloads since deposited on 23 Mar 2009
11 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Department of Chemistry
Dewey Decimal Classification:540 Chemistry
Language:English
Date:May 2006
Deposited On:23 Mar 2009 18:19
Last Modified:02 Jun 2016 07:02
Publisher:American Institute of Physics
ISSN:0021-9606
Free access at:Publisher DOI. An embargo period may apply.
Publisher DOI:https://doi.org/10.1063/1.2202323
PubMed ID:16774367

Download

[img]
Preview
Content: Published Version
Filetype: PDF
Size: 1MB
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations