UZH-Logo

LIF-dependent JAK3 activation is not essential for retinal degeneration


Lange, C; Thiersch, M; Samardzija, M; Bürgi, S; Joly, S; Grimm, C (2010). LIF-dependent JAK3 activation is not essential for retinal degeneration. Journal of Neurochemistry, 113(5):1210-1220.

Abstract

Retinal degeneration causes the induction of a leukemia inhibitory factor (LIF)-controlled survival pathway which includes Janus kinase/signal transducer and activator of transcription signaling. Lack of LIF prevents activation of this signaling cascade and accelerates disease progression leading to a fast loss of photoreceptor cells. In this study, we show that expression of Janus kinase 3 (Jak3), but not of the other members of the family of Janus kinases, is induced in four different models of retinal degeneration and that LIF is essential and sufficient to activate Jak3 gene expression. We also show that the induction of Jak3 and Lif may not depend directly on cell death but rather on the retinal stress during photoreceptor degeneration. However, despite its dependence on LIF, JAK3 is not essential for LIF-mediated photoreceptor protection or gene expression. Also, absence of JAK3 in knockout mice did not affect immune-related responses in the degenerating retina. JAK3 may therefore play a different, yet unknown, role in the retinal response to photoreceptor injury

Retinal degeneration causes the induction of a leukemia inhibitory factor (LIF)-controlled survival pathway which includes Janus kinase/signal transducer and activator of transcription signaling. Lack of LIF prevents activation of this signaling cascade and accelerates disease progression leading to a fast loss of photoreceptor cells. In this study, we show that expression of Janus kinase 3 (Jak3), but not of the other members of the family of Janus kinases, is induced in four different models of retinal degeneration and that LIF is essential and sufficient to activate Jak3 gene expression. We also show that the induction of Jak3 and Lif may not depend directly on cell death but rather on the retinal stress during photoreceptor degeneration. However, despite its dependence on LIF, JAK3 is not essential for LIF-mediated photoreceptor protection or gene expression. Also, absence of JAK3 in knockout mice did not affect immune-related responses in the degenerating retina. JAK3 may therefore play a different, yet unknown, role in the retinal response to photoreceptor injury

Citations

1 citation in Web of Science®
1 citation in Scopus®
Google Scholar™

Altmetrics

Downloads

122 downloads since deposited on 05 Jul 2010
22 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > University Hospital Zurich > Ophthalmology Clinic
04 Faculty of Medicine > Center for Integrative Human Physiology
Dewey Decimal Classification:570 Life sciences; biology
610 Medicine & health
Language:English
Date:June 2010
Deposited On:05 Jul 2010 15:17
Last Modified:05 Apr 2016 14:10
Publisher:Wiley-Blackwell
ISSN:0022-3042
Funders:Swiss National Science Foundation (Grant 3100A0–117760), Fritz Tobler Foundation, H. Messerli Foundation
Publisher DOI:10.1111/j.1471-4159.2010.06686.x
PubMed ID:20345762
Permanent URL: http://doi.org/10.5167/uzh-34538

Download

[img]
Content: Published Version
Filetype: PDF - Registered users only
Size: 954kB
View at publisher
[img]
Preview
Content: Accepted Version
Filetype: PDF
Size: 2MB

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations