UZH-Logo

Maintenance Infos

Hypoxia tolerance in animals: biology and application


Gorr, T A; Wichmann, D; Hu, J; Hermes-Lima, M; Welker, A F; Terwilliger, N B; Wren, J F; Viney, M; Morris, S; Nilsson, G E; Deten, A; Soliz, J; Gassmann, M (2010). Hypoxia tolerance in animals: biology and application. Physiological and Biochemical Zoology, 83(5):733-752.

Abstract

Abstract Many invertebrates and ectothermic vertebrates successfully cope with a fluctuating supply of ambient oxygen-and consequently, a highly variable tissue oxygenation-through increasing their antioxidant barriers. During chronic deprivation of oxygen, however, the hypometabolic defense mode of the fruit fly Drosophila, the hypoxia-induced behavioral hypothermia of the crayfish Pacifastacus leniusculus, and the production of ethanol during anoxia by the crucian carp Carassius carassius all indicate that these animals are also capable of utilizing a suite of genetic and physiological defenses to survive otherwise lethal reductions in tissue oxygenation. Normally, much of an organism's gene response to hypoxia is orchestrated via the hypoxia-inducible transcription factor HIF. Recent developments expand our view of HIF function even further by highlighting regulatory roles for HIF in the hypometabolism of insects, in the molting and the normoxic immune response of crustaceans, and in the control-via the downstream effector gene erythropoietin-of the hypoxic ventilatory response and pulmonary hypertension in mammals. These and related topics were collectively presented by the authors in a symposium of the 2008 ICA-CBP conference at Mara National Reserve, Kenya, Africa. This synthesis article communicates the essence of the symposium presentations to the wider community.

Abstract

Abstract Many invertebrates and ectothermic vertebrates successfully cope with a fluctuating supply of ambient oxygen-and consequently, a highly variable tissue oxygenation-through increasing their antioxidant barriers. During chronic deprivation of oxygen, however, the hypometabolic defense mode of the fruit fly Drosophila, the hypoxia-induced behavioral hypothermia of the crayfish Pacifastacus leniusculus, and the production of ethanol during anoxia by the crucian carp Carassius carassius all indicate that these animals are also capable of utilizing a suite of genetic and physiological defenses to survive otherwise lethal reductions in tissue oxygenation. Normally, much of an organism's gene response to hypoxia is orchestrated via the hypoxia-inducible transcription factor HIF. Recent developments expand our view of HIF function even further by highlighting regulatory roles for HIF in the hypometabolism of insects, in the molting and the normoxic immune response of crustaceans, and in the control-via the downstream effector gene erythropoietin-of the hypoxic ventilatory response and pulmonary hypertension in mammals. These and related topics were collectively presented by the authors in a symposium of the 2008 ICA-CBP conference at Mara National Reserve, Kenya, Africa. This synthesis article communicates the essence of the symposium presentations to the wider community.

Citations

49 citations in Web of Science®
52 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

183 downloads since deposited on 06 Jul 2010
38 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:05 Vetsuisse Faculty > Institute of Veterinary Physiology
Dewey Decimal Classification:570 Life sciences; biology
Language:English
Date:June 2010
Deposited On:06 Jul 2010 14:07
Last Modified:05 Apr 2016 14:10
Publisher:University of Chicago Press
ISSN:1522-2152
Additional Information:We dedicate this article to Steve Morris (deceased 2009) in honor of his legacy as an inspiring teacher and scientist, a dedicated lover of wildlife biology, and a great guy. This article was prepared as an overview of a symposium at “Molecules to Migration: Pressures of Life,” the Fourth International Conference in Africa for Comparative Physiology and Biochemistry, Maasai Mara National Reserve, Kenya, 2008 (http://www.natural‐events.com/mara).
Publisher DOI:https://doi.org/10.1086/648581
PubMed ID:20565233

Download

[img]
Filetype: PDF
Size: 1MB
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations