UZH-Logo

Maintenance Infos

Behavior of spinal neurons deprived of supraspinal input


Dietz, V (2010). Behavior of spinal neurons deprived of supraspinal input. Nature Reviews. Neurology, 6(3):167-174.

Abstract

This Review discusses the spinal neuronal changes that occur after a complete spinal cord injury (SCI) in humans. Early after an SCI, neither locomotor nor spinal reflex activity can be evoked. Once spinal shock has resolved, locomotor activity and an early spinal reflex component reappear in response to appropriate peripheral afferent input. In the subsequent 4-8 months, clinical signs of spasticity appear, largely as a result of non-neuronal (for example, muscular) changes, whereas locomotor and spinal reflex activity undergo little change. At 9-12 months, the electromyographic amplitude in the leg muscles during assisted locomotion declines, accompanied by a decrease in the amplitude of the early spinal reflex component and an increase in the amplitude of a late spinal reflex component. This exhaustion of locomotor activity also occurs in nonambulatory patients with incomplete SCI. Neuronal dysfunction is fully established 1 year after the injury without further alterations in subsequent years. In chronic SCI, the absence of input from supraspinal sources has been suggested to lead to degradation of neuronal function below the level of the lesion or, alternatively, a predominance of inhibitory signaling to the locomotor pattern generator. Appropriate training and/or provision of afferent input to spinal neurons might help to prevent neuronal dysfunction in chronic SCI.

This Review discusses the spinal neuronal changes that occur after a complete spinal cord injury (SCI) in humans. Early after an SCI, neither locomotor nor spinal reflex activity can be evoked. Once spinal shock has resolved, locomotor activity and an early spinal reflex component reappear in response to appropriate peripheral afferent input. In the subsequent 4-8 months, clinical signs of spasticity appear, largely as a result of non-neuronal (for example, muscular) changes, whereas locomotor and spinal reflex activity undergo little change. At 9-12 months, the electromyographic amplitude in the leg muscles during assisted locomotion declines, accompanied by a decrease in the amplitude of the early spinal reflex component and an increase in the amplitude of a late spinal reflex component. This exhaustion of locomotor activity also occurs in nonambulatory patients with incomplete SCI. Neuronal dysfunction is fully established 1 year after the injury without further alterations in subsequent years. In chronic SCI, the absence of input from supraspinal sources has been suggested to lead to degradation of neuronal function below the level of the lesion or, alternatively, a predominance of inhibitory signaling to the locomotor pattern generator. Appropriate training and/or provision of afferent input to spinal neurons might help to prevent neuronal dysfunction in chronic SCI.

Citations

34 citations in Web of Science®
38 citations in Scopus®
Google Scholar™

Altmetrics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Balgrist University Hospital, Swiss Spinal Cord Injury Center
Dewey Decimal Classification:610 Medicine & health
Language:English
Date:March 2010
Deposited On:08 Jul 2010 12:53
Last Modified:05 Apr 2016 14:10
Publisher:Nature Publishing Group
ISSN:1759-4758
Publisher DOI:https://doi.org/10.1038/nrneurol.2009.227
PubMed ID:20101254

Download

Full text not available from this repository.View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations