UZH-Logo

Maintenance Infos

Heterozygous fitness effects of clonally transmitted genomes in waterfrogs.


Vorburger, C (2001). Heterozygous fitness effects of clonally transmitted genomes in waterfrogs. Journal of Evolutionary Biology, 14(4):602-610.

Abstract

The European waterfrog Rana esculenta (RL-genotype) is a natural hybrid between R. ridibunda (RR) and R. lessonae (LL) and reproduces by hybridogenesis, i.e. it eliminates the L-genome from the germline and produces gametes only containing the clonally transmitted R-genome. Because of the lack of recombination, R-genomes are prone to accumulate spontaneous deleterious mutations. The homozygous effects of such mutations become evident in matings between hybrids: their offspring possess two clonal R-genomes and are generally inviable. However, the evolutionary fate of R. esculenta mainly depends on the heterozygous effects of mutations on the R-genome. These effects may be hidden in the hybrid R. esculenta because it has been shown to benefit from spontaneous heterosis. To uncouple clonal inheritance from hybridity, I crossed R. esculenta with R. ridibunda to produce nonhybrid offspring with one clonal and one sexual R-genome, and compared their survival and larval performance with normal, sexually produced R. ridibunda tadpoles. Because environmental stress can enhance the negative effects of mutation accumulation, I measured the performance at high and low food levels. There was no indication that tadpoles with a clonal genome performed worse at either food level, suggesting that at least in the larval stage, R. esculenta benefits from heterosis without incurring any costs because of heterozygous effects of deleterious mutations on the clonally transmitted R-genome.

The European waterfrog Rana esculenta (RL-genotype) is a natural hybrid between R. ridibunda (RR) and R. lessonae (LL) and reproduces by hybridogenesis, i.e. it eliminates the L-genome from the germline and produces gametes only containing the clonally transmitted R-genome. Because of the lack of recombination, R-genomes are prone to accumulate spontaneous deleterious mutations. The homozygous effects of such mutations become evident in matings between hybrids: their offspring possess two clonal R-genomes and are generally inviable. However, the evolutionary fate of R. esculenta mainly depends on the heterozygous effects of mutations on the R-genome. These effects may be hidden in the hybrid R. esculenta because it has been shown to benefit from spontaneous heterosis. To uncouple clonal inheritance from hybridity, I crossed R. esculenta with R. ridibunda to produce nonhybrid offspring with one clonal and one sexual R-genome, and compared their survival and larval performance with normal, sexually produced R. ridibunda tadpoles. Because environmental stress can enhance the negative effects of mutation accumulation, I measured the performance at high and low food levels. There was no indication that tadpoles with a clonal genome performed worse at either food level, suggesting that at least in the larval stage, R. esculenta benefits from heterosis without incurring any costs because of heterozygous effects of deleterious mutations on the clonally transmitted R-genome.

Citations

18 citations in Web of Science®
18 citations in Scopus®
Google Scholar™

Altmetrics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Institute of Evolutionary Biology and Environmental Studies
Dewey Decimal Classification:570 Life sciences; biology
590 Animals (Zoology)
Language:English
Date:2001
Deposited On:11 Feb 2008 12:14
Last Modified:05 Apr 2016 12:13
Publisher:Wiley-Blackwell
ISSN:1010-061X
Publisher DOI:10.1046/j.1420-9101.2001.00307.x

Download

Full text not available from this repository.View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations