Predictors and Consequences of Daily Goal Adaptation

Koenig, C J; Van Eerde, W; Burch, A
Predictors and Consequences of Daily Goal Adaptation

Abstract

Efficient self-regulation has been argued to consist of more than just setting goals and tenaciously pursuing them - it also requires that people adapt their goals to changing circumstances. Although previous studies have already focused on interindividual differences in goal disengagement (one aspect of goal adaptation), so far, no study has looked at predictors and consequences of daily work goal adaptation. As predicted, daily goal adaptation was related to the amount of unplanned tasks and the extent to which the time needed for tasks was underestimated. However, unlike previous research on goal disengagement, daily goal adaptation had a negative (and not a positive) effect on well-being and subjective productivity. It is suggested that the emotional aspect of goal adaptation/goal disengagement needs more research attention.
Predictors and Consequences of Daily Goal Adaptation: A Diary Study

Cornelius J. König
Universität Zürich

Wendelien van Eerde
Universiteit van Amsterdam Business School

Anita Burch
Universität Zürich

This study was supported by a grant by the “Stiftung Suzanne und Hans Biäsch zur Förderung der Angewandten Psychologie”, awarded to the first author (in collaboration with the second author). We would like to thank James Y. Shah for his comments on the manuscript.

Correspondence concerning this article should be addressed to Cornelius J. König, Universität Zürich, Psychologisches Institut, Binzmühlestr. 14/12, CH-8050 Zürich, Switzerland, or to c.koenig@psychologie.uzh.ch.
Abstract

Efficient self-regulation has been argued to consist of more than just setting goals and tenaciously pursuing them— it also requires that people adapt their goals to changing circumstances. Although previous studies have already focused on interindividual differences in goal disengagement (one aspect of goal adaptation), so far, no study has looked at predictors and consequences of daily work goal adaptation. As predicted, daily goal adaptation was related to the amount of unplanned tasks and the extent to which the time needed for tasks was underestimated. However, unlike previous research on goal disengagement, daily goal adaptation had a negative (and not a positive) effect on well-being and subjective productivity. It is suggested that the emotional aspect of goal adaptation/goal disengagement needs more research attention.

Keywords: goal disengagement, goal adaptation, multiple goals, self-regulation, self-management, time management
Consequences and Predictors of Daily Goal Adaptation: A Diary Study

People should set specific and difficult goals and try to achieve them – this is what goal setting theory (Locke & Latham, 1990) suggests. However, there are reasons to question whether this simple recipe is always appropriate for people’s daily work life. In our fast-paced world, sticking to goals might impair the often demanded flexibility (e.g., Pulakos, Arad, Donovan, & Plamondon, 2000). For example, goals may quickly become obsolete because a customer changes his mind or a supervisor needs support urgently. In such situations, the original goal might have been specific and difficult but it is impossible to achieve at the moment. Thus, effective self-regulation may require more than setting goals and tenaciously pursuing them. In fact, people may also need to actively adapt their goals: to reprioritize them, to postpone them, to reduce the quality of work as originally planned, to reduce effort toward the goal, and, in the case of unattainable goals, to disengage from them.

So far, only one aspect of goal adaptation has been studied, namely goal disengagement (Wrosch, Scheier, Carver, & Schulz, 2003; Wrosch, Scheier, Miller, Schulz, & Carver, 2003). Wrosch and colleagues have argued that goal disengagement has positive effects on well-being and other outcome variables because goal disengagement implies withdrawing effort and commitment and thus frees resources (e.g., time and energy) for the attainment of other goals. Furthermore, it prevents goal failure and the distress that may result from it. Similar arguments have also been raised by Shah (2005). Some support for the idea that goal disengagement is a beneficial self-regulation strategy has been established, as interindividual differences in goal adaptation were shown to be related to better well-being (Brandtstädter & Renner, 1990; Heckhausen, Wrosch, & Fleeson, 2001; Wrosch & Heckhausen, 1999; Wrosch, Miller, Scheier,
Most recently, goal adaptation was also found to have psychobiological consequences, as the inability to disengage was related to a marker protein of systemic inflammation (Miller & Wrosch, 2007) and to a steeper (i.e., more normative) rhythm in the diurnal cortisol secretion (Wrosch et al., 2007).

Although previous studies have tested goal disengagement only as an interindividual difference variable, the model of Wrosch and colleagues (Wrosch, Scheier, Carver et al., 2003) also suggests that goal disengagement has positive intraindividual effects. In other words, the argumentation inherent in the model should also be valid for intraindividual processes: If a person disengages from a goal, he or she should experience positive effects such as better well-being. As Wrosch and colleagues put forward their arguments in a general manner, they do not restrict the positive effects of goal disengagement to a certain kind of goals. Thus, even though previous research (e.g., Wrosch & Heckhausen, 1999) focused on higher order goals, there are no theoretical reasons as to why disengaging from higher order goals should not be generalized to disengaging from lower order goals (i.e., daily goals).

The first aim of this paper was therefore to shift the center of attention away from studying individual differences in goal disengagement as a specific aspect of goal adaptation to the intraindividual level and to goal adaptation in general. Thus, this study does not explore whether it matters that people differ in terms of goal disengagement, but rather whether daily fluctuation in goal adaptation is important. More precisely, we hypothesize that the arguments of Wrosch, Scheier, Carver et al. (2003) about the positive effects of goal disengagement generalize to its more general form, goal adaptation, and also to daily goals:

H1a: Daily goal adaptation is positively related to daily well-being.
A second goal of this study was to test the generalizability of the effects. In particular, if goal adaptation has generally positive effects, then daily goal adaptation may also be related to feelings of productivity. If people realize that their previous plan to achieve goals is not going to work out and turn their attention towards other goals, they can devote their energy to these other goals, which should make achieving them more likely and thus result in the feeling of being productive. In other words, we hypothesize:

H1b: Daily goal adaptation is positively related to daily subjective productivity.

Furthermore, we also wanted to explore predictors of goal adaptation. Previous research has been silent with regard to the question of why people think that they “have to stop pursuing an important goal” (Wrosch, Scheier, Miller et al., 2003, p. 1497). Because the focus has been on reactions to goal disengagement (e.g., Wrosch et al., 2007), participants in these studies may have disengaged for different reasons – they may have felt that they were being forced to disengage from goals because of events beyond their control or may have disengaged because of poor planning of actions under the control of the individual. At the intraindividual, daily level, goal adaptation may be caused in particular by two factors: the amount of unplanned tasks that people have to work on and the underestimation of task duration. For example, people may have supervisors who interrupt their work by giving them new tasks. Another example is a customer who phones and expresses a new wish that cannot be postponed because the organization gives high priority to fulfilling all of the requests voiced by customers. Such interruptions are a common feature of everyday work life in many jobs and can thus be assumed to be beyond the control of an individual employee (e.g., Mark, González, & Harris, 2005; Oshagbemi, 1995), and it is very likely that at least some interruptions result in new tasks. These unplanned tasks may
absorb so much time and energy that other goals become unattainable (Shah, 2005; Wrosch, Scheier, Carver et al., 2003). Therefore, we propose:

H2a: The more unplanned tasks a day has, the more people adapt their daily goals.

A second potential predictor of goal adaptation is the underestimation of task duration. Underestimation of task duration has been found for many tasks in the laboratory and in the field, ranging from assembling a computer stand, doing spell-check tasks, programming software to Christmas shopping (see, e.g., Buehler & Griffin, 2003; König, 2005; Thomas, Handley, & Newstead, 2007). People seem to underestimate the duration of tasks because they focus too much on details of tasks at hand (i.e., on developing a plan for success) and not enough on possible events that could lead to trouble (Buehler, Griffin, & Ross, 2002). Not only is this underestimation very common, but it is also remarkably resistant to interventions (e.g., Byram, 1997; Newby-Clark, Ross, Buehler, Koehler, & Griffin, 2000), which shows that it is a general human tendency that is difficult to control for individuals. For daily goal management, underestimating the duration of tasks means that people end up with less time than they originally thought. The time that is unexpectedly needed for finishing one task encroaches upon the time needed for working on other goals, making them less attainable. If people realize this, they can be expected to adapt their plans regarding what they want to achieve on a given day. Thus, we hypothesize:

H2b: The more people underestimate the duration of tasks, the more they adapt their goals.
Method

Participants

Participants were recruited at two Swiss companies in the insurance industry. We distributed 84 paper questionnaire sets (with questionnaires for five days) and received 54 back (a response rate of 64%). Twenty-five respondents were female (46.3%) and 29 male (53.7%). Four were younger than 25 years (7.4%), 24 were between 25 and 34 years (44.4%), 18 between 35 and 44 years (33.3%), 7 between 45 and 54 years (13.0%), and one was older than 55 years (1.9%). Twenty-eight were employees without a leadership position and twenty-six were employees with a leadership position. Eighteen had an organizational tenure of less than 5 years, 17 a tenure between 5 and 10 years, and 19 a tenure of more than 10 years.

Measures

Participants answered all items on a 7-point Likert scale (1 = strongly disagree, 2 = disagree, 3 = rather disagree, 4 = in between, 5 = rather agree, 6 = agree, and 7 = strongly agree; see González-Romá & Espejo, 2003; Lozano, García-Cueto, & Muñiz, 2008). They were asked to fill out all questionnaires at the end of a working day and to answer all items with regard to work. We asked them to specify the date and the time of filling it out. Twenty-two filled out the questionnaires on consecutive days, 8 had a weekend between the first and the last day (e.g., Wednesday, Thursday, Friday, Monday, and Tuesday), 16 had a weekend plus 1 to 3 days between the first and the last day (e.g., Wednesday, Thursday, Friday, Tuesday, and Wednesday, with no questionnaire on Monday), and 8 more than a weekend plus 3 days. In total, the days were spread over a period of around 2 months. On average, they filled out the questionnaires at 6:11 pm (SD = 2 hrs 17 min).
Daily goal adaptation was measured with five items: “I have changed the priorities of tasks today.”, “Today, I reduced my aspirations regarding the quality with which I reach my goals”, “Today, I postponed goals to a later point in time”, “I have decided today that it is okay to finish some tasks in a nonperfect way”, and “I decided today to abandon goals”

To test the homogeneity of the scale, we conducted five principal component analyses (one for each day). One factor was extracted in each analysis. This factor explained on average 51.7% of the variance (50.7% on day 1, 46.7% on day 2, 54.7% on day 3, 57.0% on day 4, and 53.3% on day 5). The average loading of each item was .74 (SD = 0.07), thus supporting a one-factor solution. (The small sample size on the person level precluded the possibility to run confirmatory factor analyses.)

Unplanned tasks were measured with the following three items: “There were many unplanned tasks today”, “Unplanned tasks took a long time today”, and “I did not plan to work on several tasks that I was given today.”

Underestimating time was measured with the following three items: “I underestimated the duration of tasks today”, “Some tasks took longer today than expected”, and “I was too optimistic today when estimating the duration of tasks.”

Well-being was measured with twelve items of the Profile of Mood States (McNair, Lorr, & Droppelman, 1971), following Sonnentag and Natter (2004). The Profile of Mood States begins with the sentence “Today I felt or was…”, which was followed by twelve statements: “vigorous”, “unhappy” (negatively scored), “desperate” (negatively scored), “active”, “sad” (negatively scored), “tired” (negatively scored), “lively”, “worn out” (negatively scored), “exhausted” (negatively scored), “helpless” (negatively scored), “energetic”, and “fatigued” (negatively scored).
Subjective productivity was measured with a four-item scale developed by Luong and Rogelberg (2005). The items are “I was productive today,” “I accomplished a lot at work today,” “I have the impression that I wasted a great part of the day” (negatively scored), “The time I worked today was spent in a useful way.”

Analyses

Data were analyzed using hierarchical linear modeling (Raudenbush & Bryk, 2001) because diary data have a nested (multilevel) structure: Variables at the day level are nested within people. In line with the recommendation by Raudenbush and Bryk (2001), all measures at the day level were person-centered (i.e., interindividual variance was removed). We used the computer program HLM (Hierarchical Linear Modeling; Raudenbush, Bryk, & Congdon, 2006) for these analyses.

Results

Table 1 reports the descriptive statistics and correlations for all variables, averaged over days. It also shows that the reliabilities of all scales were satisfactory.

The following set of equations was used for testing Hypotheses 1a and 1b:

\[Y_{ij} = \pi_{0j} + \pi_{1j} \text{GOAL ADAPTATION}_{ij} + e_{ij}, \]
\[\pi_{0j} = \beta_{00} + r_{0j}, \]
\[\pi_{1j} = \beta_{10} + r_{1j}, \]

where the dependent variable \(Y_{ij} \) is WELL-BEING\(_{ij} \) or SUBJECTIVE PRODUCTIVITY\(_{ij} \) on the \(i \)th day for the \(j \)th participant, \(\pi_{0j} \) the individual’s mean well-being or productivity across all days, GOAL ADAPTATION\(_{ij} \) the predictor variable, \(\pi_{1j} \) the regression weight that indicates how much variance in well-being or productivity scores depend on
differences in goal adaptation, \(\beta_{00} \) the sample-wide mean well-being or productivity score, \(\beta_{10} \) the sample-wide mean goal adaptation score, and \(e_{ij}, r_{0j}, \) and \(r_{1j} \) are error terms.

As Table 2 shows, \(\beta_{10} \) became significant with both dependent variables, indicating that goal adaptation is associated with well-being and subjective productivity. In contrast to Hypotheses 1a and 1b, however, goal adaptation was negatively related to both well-being and subjective productivity, whereas Hypotheses 1a and 1b predicted a positive relationship.

The hypotheses regarding the predictors of goal adaptation (Hypotheses 2a and 2b) were tested using the following set of equations:

\[
\text{GOAL ADAPTATION}_{ij} = \pi_{0j} + \pi_{1j} \text{UNPLANNED TASKS}_{ij} + \pi_{2j} \text{UNDERESTIMATING TIME}_{ij} + e_{ij},
\]

\[
\pi_{0j} = \beta_{00} + r_{0j}, \quad (4a)
\]

\[
\pi_{1j} = \beta_{10} + r_{1j}, \quad (4b)
\]

\[
\pi_{2j} = \beta_{20} + r_{2j}. \quad (4c)
\]

Table 3 shows that both variables (the amount of unplanned tasks and the extent of underestimating the time needed for tasks) were significant positive predictors. This supports Hypotheses 2a and 2b that there is a positive relationship between goal adaptation and the extent of unplanned tasks and the degree of underestimation of time needed for tasks.

Discussion

This study is the first to examine goal adaptation on the intraindividual level. Consistent with previous thinking, the extent of unplanned tasks and the extent of underestimation of task duration predicted daily goal adaptation. More importantly, the consequences of daily goal adaptation differed sharply from previous studies on goal disengagement (e.g., Brandtstädter &
Predictors and Consequences of Daily Goal Adaptation

Renner, 1990; Heckhausen et al., 2001; Wrosch et al., 2007; Wrosch, Scheier, Miller et al., 2003): Daily goal adaptation was related to less (instead of more) well-being and to reduced subjective productivity, contrary to expectations.

It was argued and indeed found that daily goal adaptation at work can be predicted by the extent of unplanned tasks and the degree of underestimation of task duration. This is consistent with the idea that even the best time management plan can become obsolete if either the environment changes (i.e., new tasks are allocated) or if the plan is based on inaccurate starting values (i.e., task duration is underestimated). It is arguably beyond the control of individuals if, for example, their supervisors give them new tasks to work on. Moreover, if underestimating task duration is indeed a general human tendency (e.g., Newby-Clark et al., 2000), then this underestimation is also difficult to control by individuals. Thus, our results indicate that goal adaptation is often caused by events that are most likely beyond people’s control.

Interestingly, our diary data suggest that goal adaptation is negatively related to well-being and to subjective productivity. There are at least four possible arguments as to why our results are in contrast with previous research on goal disengagement.

First, different results might be due to differences in the goal hierarchy upon which daily goals (like in this study) and life-goals like establishing a new intimate relationship (as in the study by Wrosch & Heckhausen, 1999) can be located. However, as argued before, there are no theoretical reasons as to why goal disengagement or, more generally, goal adaptation depends on the hierarchical level of goals.

Second, some previous studies (e.g., Heckhausen et al., 2001) focused on life goals, while the current study focused on work goals. For example, researchers studied whether people were able to disengage from goals such as having children (Heckhausen et al., 2001) or establishing a
new intimate relationship (Wrosch & Heckhausen, 1999). It is, however, unlikely that this particular difference can explain the diverging findings, because researchers have also examined people’s general tendency to disengage from goals without any goal specification (goals that could therefore also have been work-related) and found similar results to the studies that focused on specific goals (Brandtstädter & Renner, 1990; Miller & Wrosch, 2007; Wrosch et al., 2007; Wrosch, Scheier, Miller et al., 2003). Thus, the particular context for goals does not seem to matter. In addition, most people spend a considerable portion of their lifetime at work, meaning that the work domain is therefore an important part of life and theoretical arguments on life goals (e.g., Wrosch, Scheier, Carver et al., 2003) should also apply to work goals.

Third, differences between goal adaptation and goal disengagement may matter. We argued that goal disengagement is one aspect of goal adaptation, which is more general and consists of more aspects (e.g., also goal postponement). Despite this, our conceptualization may still be close to the actual operationalization used by Wrosch, Scheier, Miller et al. (2003; also used by Miller & Wrosch, 2007, and Wrosch et al., 2007). Their self-goal disengagement scale consists of four items, with one being “If I have to stop pursuing an important goal in my life, it’s easy for me to reduce my effort toward the goal” (p. 1497). Thus, this measure seems to focus not only on goal disengagement but to include other (goal adaptation) aspects as well. More generally, this makes it at least unlikely that the results are due to our broader focus on goal adaptation.

Fourth, goal adaptation may produce relatively short-term negative emotions, which may have faded out in previous studies, but not in our study. Goal adaptation may be a painful process because people have to admit that their original goals are unattainable, independent of the cause. Informal remarks from our participants support this emotional perspective on goal
adaptation at least anecdotally (see also Louro, Pieters, & Zeelenberg, 2007). If, as in previous studies, participants are asked whether they generally have difficulties in disengaging from goals (e.g., Wrosch et al., 2007), they may not think about the negative emotions that accompanied goal disengagement. However, negative emotions were potentially still prominent when participants filled out the diary. This explanation would be consistent with memory research, which shows that humans remember the positive rather than the negative aspects (e.g., Wagenaar, 1986) and with current thinking that emotions are rather short-term (e.g., Reeve, 2005).

The emotion-focused explanation implies that current thinking on goal adaptation (Wrosch, Scheier, Carver et al., 2003) may have to be extended by incorporating an affective component. So far, the model of Wrosch, Scheier, Carver et al. has not elaborated on the affective component. In particular, the emotional time course that accompanies the adaptation from a particular goal may deserve more attention.

Clearly, future research is needed to test this explanation. Two kinds of studies would be especially welcome. First, future research on daily goal adaptation should also incorporate affective variables, which would enable researchers to show that the actual disengagement is indeed a painful experience that results in negative emotions. In this case, researcher should follow the advice of a reviewer who suggested for such a study that well-being should be measured with items that do not contain affectively toned item but may rather focus on the physical or psychological health. Second, longitudinal studies would be helpful that shadow a complete goal adaptation process. Imagine, for example, that researchers follow people over time who have the goal of becoming members of executive boards. Surely, at least some people will realize (sooner or later) that this goal is unattainable for them. If the emotion-focused
explanation is correct, these people should experience negative emotions when they realize that they are not going to get as far as they originally wanted and report reduced well-being. Later on, when they have adapted to their situation, they should report higher well-being because they then experience the advantages of disengaging from goals.

Although the findings reported here extend our understanding of goal adaptation in a number of ways, we must acknowledge a few limitations. First, this study did not include goal reengagement (Wrosch, Scheier, Miller et al., 2003). However, daily goal reengagement can be considered as being of less relevance at work because most goals at work are set by the supervisors and there may often be no need for active searching for new goals. Furthermore, previous studies (Miller & Wrosch, 2007; Wrosch et al., 2007) showed that the impact of goal reengagement is generally smaller than the impact of goal disengagement (or even nonsignificant). Second, the present study is only correlational in nature, which cannot prove causality. Thus, future research may be able to manipulate goal adaptation and test the effects on outcome variables like the ones used in this study. Such a goal manipulation could be achieved by teaching planning techniques (e.g., the use of implementation intentions, e.g., Gollwitzer, 1999; Koole & van't Spijker, 2000) to some participants, but not to others, and it could be expected that the training group has a smaller need to adapt goals. Third, our study was designed only to evaluate intraindividual effects of goal adaptation. However, it would be important to know whether the intraindividual effects are moderated by some individual characteristics. For example, people who have a tendency to plan goal adaptation ahead may be react in a less negative way if they have to adapt their goals (see Henderson, Gollwitzer, & Oettingen, 2007). Fourth, the particular sample we used could entail a threat to the generalizability of the findings, as is the case in many studies. All of our participants were Swiss, and Swiss people score
particularly highly on future orientation (i.e., the degree to which individuals engage in future-oriented behaviors such as planning; Ashkanasy, Gupta, Mayfield, & Trevor-Roberts, 2004). Not being able to stick to plans (i.e., goal adaptation) might therefore be more negative for Swiss people than for people from other cultures. In any case, replications in other contexts would be very welcome. Fifth, all our data came from self-report, which could have introduced a common method bias (Podsakoff, MacKenzie, Lee, & Podsakoff, 2003). However, common method bias may be less problematic as often assumed (Spector, 2006). Furthermore, our statistical analyses (i.e., centering the scores at the individuals’ means) eliminated response tendencies stemming from personal characteristics as one source of common method variance (see Ilies, Scott, & Judge, 2006). In addition, obtaining the judgment of someone on how well someone else estimated time or how much unplanned work came up in the other’s work day may provide a completely different view on a person’s work (if such a data collection is feasible at all).

And now, dear reader, we thank you for not having disengaged from the goal of reading our article…
References

Table 1

Means, Standard Deviations, and Correlations among Study Variables (Averaged over Days)

<table>
<thead>
<tr>
<th>Variable</th>
<th>M</th>
<th>SD</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Daily goal adaptation</td>
<td>2.80</td>
<td>1.20</td>
<td>.79</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Unplanned tasks</td>
<td>3.57</td>
<td>1.68</td>
<td>.415</td>
<td>.89</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Underestimating time</td>
<td>3.51</td>
<td>1.49</td>
<td>.412</td>
<td>.410</td>
<td>.86</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Well-being</td>
<td>5.24</td>
<td>1.01</td>
<td>-.431</td>
<td>-.252</td>
<td>-.332</td>
<td>.91</td>
<td></td>
</tr>
<tr>
<td>5. Subjective productivity</td>
<td>5.23</td>
<td>1.12</td>
<td>-.389</td>
<td>-.112</td>
<td>-.205</td>
<td>.603</td>
<td>.82</td>
</tr>
</tbody>
</table>

Note. Average Cronbach’s alphas in italics in the diagonal. $N_{\text{participants}} = 54$. |Correlations| $\geq .27$ are significant at $p < .05$; |correlations| $\geq .35$ at $p < .01$.
Table 2

Effects of Goal Adaptation on Well-Being and Productivity

<table>
<thead>
<tr>
<th>Dependent variable</th>
<th>Predictor</th>
<th>Parameter</th>
<th>Estimate</th>
<th>SE</th>
<th>t-ratio</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Well-being</td>
<td>Intercept</td>
<td>β₀₀</td>
<td>5.24</td>
<td>0.10</td>
<td>50.38</td>
<td>< .01</td>
</tr>
<tr>
<td></td>
<td>Goal adaptation</td>
<td>β₁₀</td>
<td>-0.25</td>
<td>0.06</td>
<td>-4.09</td>
<td>< .01</td>
</tr>
<tr>
<td>Productivity</td>
<td>Intercept</td>
<td>β₀₀</td>
<td>5.23</td>
<td>0.11</td>
<td>48.74</td>
<td>< .01</td>
</tr>
<tr>
<td></td>
<td>Goal adaptation</td>
<td>β₁₀</td>
<td>-0.23</td>
<td>0.08</td>
<td>-2.99</td>
<td>< .01</td>
</tr>
</tbody>
</table>

Note. N_{participants} = 54; N_{days} = 262.
Table 3

Effects of Underestimating Task Duration and the Extent of Unplanned Tasks on Goal Adaptation

<table>
<thead>
<tr>
<th>Predictor</th>
<th>Parameter</th>
<th>Estimate</th>
<th>SE</th>
<th>t-ratio</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>β_{00}</td>
<td>2.80</td>
<td>0.12</td>
<td>24.25</td>
<td>< .01</td>
</tr>
<tr>
<td>Unplanned tasks</td>
<td>β_{10}</td>
<td>0.13</td>
<td>0.05</td>
<td>2.66</td>
<td>< .05</td>
</tr>
<tr>
<td>Underestimating time</td>
<td>β_{20}</td>
<td>0.20</td>
<td>0.05</td>
<td>4.22</td>
<td>< .01</td>
</tr>
</tbody>
</table>

Note. $N_{\text{participants}} = 54; N_{\text{days}} = 262.