UZH-Logo

Maintenance Infos

Misalignment of total ankle components can induce high joint contact pressures


Espinosa, N; Walti, M; Favre, P; Snedeker, J G (2010). Misalignment of total ankle components can induce high joint contact pressures. Journal of Bone and Joint Surgery. American Volume, 92(5):1179-1187.

Abstract

BACKGROUND: A major cause of the limited longevity of total ankle replacements is premature polyethylene component wear, which can be induced by high joint contact pressures. We implemented a computational model to parametrically explore the hypothesis that intercomponent positioning deviating from the manufacturer's recommendations can result in pressure distributions that may predispose to wear of the polyethylene insert. We also investigated the hypothesis that a modern mobile-bearing design may be able to better compensate for imposed misalignments compared with an early two-component design. METHODS: Two finite element models of total ankle replacement prostheses were built to quantify peak and average contact pressures on the polyethylene insert surfaces. Models were validated by biomechanical testing of the two implant designs with use of pressure-sensitive film. The validated models were configured to replicate three potential misalignments with the most CLINICAL RELEVANCE: version of the tibial component, version of the talar component, and relative component rotation of the two-component design. The misalignments were simulated with use of the computer model with physiologically relevant boundary loads. RESULTS: With use of the manufacturer's guidelines for positioning of the two-component design, the predicted average joint contact pressures exceeded the yield stress of polyethylene (18 to 20 MPa). Pressure magnitudes increased as implant alignment was systematically deviated from this reference position. The three-component design showed lower-magnitude contact pressures in the standard position (<10 MPa) and was generally less sensitive to misalignment. Both implant systems were sensitive to version misalignment. CONCLUSIONS: In the tested implants, a highly congruent mobile-bearing total ankle replacement design yields more evenly distributed and lower-magnitude joint contact pressures than a less congruent design. Although the mobile-bearing implant reduced susceptibility to aberrant joint contact characteristics that were induced by misalignment, predicted average contact stresses reached the yield stress of polyethylene for imposed version misalignments of >5 degrees.

Abstract

BACKGROUND: A major cause of the limited longevity of total ankle replacements is premature polyethylene component wear, which can be induced by high joint contact pressures. We implemented a computational model to parametrically explore the hypothesis that intercomponent positioning deviating from the manufacturer's recommendations can result in pressure distributions that may predispose to wear of the polyethylene insert. We also investigated the hypothesis that a modern mobile-bearing design may be able to better compensate for imposed misalignments compared with an early two-component design. METHODS: Two finite element models of total ankle replacement prostheses were built to quantify peak and average contact pressures on the polyethylene insert surfaces. Models were validated by biomechanical testing of the two implant designs with use of pressure-sensitive film. The validated models were configured to replicate three potential misalignments with the most CLINICAL RELEVANCE: version of the tibial component, version of the talar component, and relative component rotation of the two-component design. The misalignments were simulated with use of the computer model with physiologically relevant boundary loads. RESULTS: With use of the manufacturer's guidelines for positioning of the two-component design, the predicted average joint contact pressures exceeded the yield stress of polyethylene (18 to 20 MPa). Pressure magnitudes increased as implant alignment was systematically deviated from this reference position. The three-component design showed lower-magnitude contact pressures in the standard position (<10 MPa) and was generally less sensitive to misalignment. Both implant systems were sensitive to version misalignment. CONCLUSIONS: In the tested implants, a highly congruent mobile-bearing total ankle replacement design yields more evenly distributed and lower-magnitude joint contact pressures than a less congruent design. Although the mobile-bearing implant reduced susceptibility to aberrant joint contact characteristics that were induced by misalignment, predicted average contact stresses reached the yield stress of polyethylene for imposed version misalignments of >5 degrees.

Citations

43 citations in Web of Science®
63 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

387 downloads since deposited on 26 Jul 2010
115 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Balgrist University Hospital, Swiss Spinal Cord Injury Center
Dewey Decimal Classification:610 Medicine & health
Language:English
Date:May 2010
Deposited On:26 Jul 2010 10:03
Last Modified:05 Apr 2016 14:12
Publisher:Boston, Journal of Bone and Joint Surgery
ISSN:0021-9355
Publisher DOI:https://doi.org/10.2106/JBJS.I.00287
PubMed ID:20439664

Download

[img]
Preview
Filetype: PDF
Size: 2MB
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations