UZH-Logo

Maintenance Infos

The ubiquitin-like protein FAT10 mediates NF-kappaB activation


Gong, Pengfei; Canaan, A; Wang, B; Leventhal, J; Snyder, A; Nair, V; Cohen, C D; Kretzler, M; D'Agati, V; Weissman, S; Ross, M J (2010). The ubiquitin-like protein FAT10 mediates NF-kappaB activation. Journal of the American Society of Nephrology (JASN), 21(2):316-326.

Abstract

NF-kappaB is a central mediator of innate immunity and contributes to the pathogenesis of several renal diseases. FAT10 is a TNF-alpha-inducible ubiquitin-like protein with a putative role in immune response, but whether FAT10 participates in TNF-alpha-induced NF-kappaB activation is unknown. Here, using renal tubular epithelial cells (RTECs) derived from FAT10(-/-) and FAT10(+/+) mice, we observed that FAT10 deficiency abrogated TNF-alpha-induced NF-kappaB activation and reduced the induction of NF-kappaB-regulated genes. Despite normal IkBalpha degradation and polyubiquitination, FAT10 deficiency impaired TNF-alpha-induced IkBalpha degradation and nuclear translocation of p65 in RTECs, suggesting defective proteasomal degradation of polyubiquitinated IkBalpha. In addition, FAT10 deficiency reduced the expression of the proteasomal subunit low molecular mass polypeptide 2 (LMP2). Transduction of FAT10(-/-) RTECs with FAT10 restored LMP2 expression, TNF-alpha-induced IkBalpha degradation, p65 nuclear translocation, and NF-kappaB activation. Furthermore, LMP2 transfection restored IkBalpha degradation in FAT10(-/-) RTECs. In humans, common types of chronic kidney disease associated with tubulointerstitial upregulation of FAT10. These data suggest that FAT10 mediates NF-kappaB activation and may promote tubulointerstitial inflammation in chronic kidney diseases.

NF-kappaB is a central mediator of innate immunity and contributes to the pathogenesis of several renal diseases. FAT10 is a TNF-alpha-inducible ubiquitin-like protein with a putative role in immune response, but whether FAT10 participates in TNF-alpha-induced NF-kappaB activation is unknown. Here, using renal tubular epithelial cells (RTECs) derived from FAT10(-/-) and FAT10(+/+) mice, we observed that FAT10 deficiency abrogated TNF-alpha-induced NF-kappaB activation and reduced the induction of NF-kappaB-regulated genes. Despite normal IkBalpha degradation and polyubiquitination, FAT10 deficiency impaired TNF-alpha-induced IkBalpha degradation and nuclear translocation of p65 in RTECs, suggesting defective proteasomal degradation of polyubiquitinated IkBalpha. In addition, FAT10 deficiency reduced the expression of the proteasomal subunit low molecular mass polypeptide 2 (LMP2). Transduction of FAT10(-/-) RTECs with FAT10 restored LMP2 expression, TNF-alpha-induced IkBalpha degradation, p65 nuclear translocation, and NF-kappaB activation. Furthermore, LMP2 transfection restored IkBalpha degradation in FAT10(-/-) RTECs. In humans, common types of chronic kidney disease associated with tubulointerstitial upregulation of FAT10. These data suggest that FAT10 mediates NF-kappaB activation and may promote tubulointerstitial inflammation in chronic kidney diseases.

Citations

41 citations in Web of Science®
41 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

0 downloads since deposited on 03 Aug 2010
0 downloads since 12 months

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > University Hospital Zurich > Clinic for Nephrology
04 Faculty of Medicine > Institute of Physiology
07 Faculty of Science > Institute of Physiology
Dewey Decimal Classification:570 Life sciences; biology
610 Medicine & health
Language:English
Date:February 2010
Deposited On:03 Aug 2010 11:55
Last Modified:05 Apr 2016 14:13
Publisher:American Society of Nephrology
ISSN:1046-6673
Free access at:Publisher DOI. An embargo period may apply.
Publisher DOI:10.1681/ASN.2009050479
PubMed ID:19959714
Permanent URL: http://doi.org/10.5167/uzh-35304

Download

[img]
Filetype: PDF - Registered users only
Size: 647kB
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations