UZH-Logo

Hoxb8-CreMice: A tool for brain-sparing conditional gene deletion


Witschi, R; Johansson, T; Morscher, G; Scheurer, L; Deschamps, J; Zeilhofer, H U (2010). Hoxb8-CreMice: A tool for brain-sparing conditional gene deletion. Genesis, 48(10):596-602.

Abstract

The spinal cord is the first site of temporal and spatial integration of nociceptive signals in the pain pathway. Neuroplastic changes occurring at this site contribute critically to various chronic pain syndromes. Gene targeting in mice has generated important insights into these processes. However, the analysis of constitutive (global) gene-deficient mice is often hampered by confounding effects arising from supraspinal sites. Here, we describe a novel Cre mouse line which expresses the Cre recombinase under the transcriptional control of the Hoxb8 gene. Within the neural axis of these mice, Hoxb8-Cre expression is found in spinal cord neurons and glial cells, and in virtually all neurons of the dorsal root ganglia, but spares the brain apart from a few cells in the spinal trigeminal nucleus. The Hoxb8-Cre mouse line should be a valuable new tool for the in vivo analysis of peripheral and spinal gene functions in pain pathways. (c) 2010 Wiley-Liss, Inc.

The spinal cord is the first site of temporal and spatial integration of nociceptive signals in the pain pathway. Neuroplastic changes occurring at this site contribute critically to various chronic pain syndromes. Gene targeting in mice has generated important insights into these processes. However, the analysis of constitutive (global) gene-deficient mice is often hampered by confounding effects arising from supraspinal sites. Here, we describe a novel Cre mouse line which expresses the Cre recombinase under the transcriptional control of the Hoxb8 gene. Within the neural axis of these mice, Hoxb8-Cre expression is found in spinal cord neurons and glial cells, and in virtually all neurons of the dorsal root ganglia, but spares the brain apart from a few cells in the spinal trigeminal nucleus. The Hoxb8-Cre mouse line should be a valuable new tool for the in vivo analysis of peripheral and spinal gene functions in pain pathways. (c) 2010 Wiley-Liss, Inc.

Citations

7 citations in Web of Science®
7 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

0 downloads since deposited on 17 Aug 2010
0 downloads since 12 months

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Institute of Pharmacology and Toxicology
Dewey Decimal Classification:570 Life sciences; biology
610 Medicine & health
Language:English
Date:October 2010
Deposited On:17 Aug 2010 08:29
Last Modified:05 Apr 2016 14:13
Publisher:Wiley-Blackwell Publishing, Inc.
ISSN:1526-954X
Publisher DOI:10.1002/dvg.20656
PubMed ID:20658520
Permanent URL: http://doi.org/10.5167/uzh-35395

Download

[img]
Content: Accepted Version
Filetype: PDF - Registered users only
Size: 2MB
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations