UZH-Logo

Maintenance Infos

MUC1 oncogene amplification correlates with protein overexpression in invasive breast carcinoma cells


Lacunza, E; Baudis, M; Colussi, A G; Segal-Eiras, A; Croce, M V; Abba, M C (2010). MUC1 oncogene amplification correlates with protein overexpression in invasive breast carcinoma cells. Cancer Genetics and Cytogenetics, 201(2):102-110.

Abstract

The MUC1 gene is aberrantly overexpressed in approximately 90% of human breast cancers. Several studies have shown that MUC1 overexpression is due to transcriptional regulatory events. However, the importance of gene amplification as a mechanism leading to the increase of MUC1 expression in breast cancer has been poorly characterized. The aim of this study was to evaluate the role of MUC1 gene amplification and protein expression in human breast cancer development. By means of real-time quantitative polymerase chain reaction and immunohistochemical methods, 83 breast tissue samples were analyzed for MUC1 gene amplification and protein expression. This analysis showed MUC1 genomic amplification and a positive association with the histopathological group in 12% (1 out of 8) of benign lesions and 38% (23 out of 60) of primary invasive breast carcinoma samples (P = 0.004). Array-comparative genomic hybridization meta-analysis of 886 primary invasive breast carcinomas obtained from 22 studies showed MUC1 genomic gain in 43.7% (387 out of 886) of the samples. Moreover, we identified a highly statistical significant association between MUC1 gene amplification and MUC1 protein expression assessed by immunohistochemistry and Western blot test (P < 0.0001). In conclusion, this study demonstrated that MUC1 copy number increases from normal breast tissue to primary invasive breast carcinomas in correlation with MUC1 protein expression.

Abstract

The MUC1 gene is aberrantly overexpressed in approximately 90% of human breast cancers. Several studies have shown that MUC1 overexpression is due to transcriptional regulatory events. However, the importance of gene amplification as a mechanism leading to the increase of MUC1 expression in breast cancer has been poorly characterized. The aim of this study was to evaluate the role of MUC1 gene amplification and protein expression in human breast cancer development. By means of real-time quantitative polymerase chain reaction and immunohistochemical methods, 83 breast tissue samples were analyzed for MUC1 gene amplification and protein expression. This analysis showed MUC1 genomic amplification and a positive association with the histopathological group in 12% (1 out of 8) of benign lesions and 38% (23 out of 60) of primary invasive breast carcinoma samples (P = 0.004). Array-comparative genomic hybridization meta-analysis of 886 primary invasive breast carcinomas obtained from 22 studies showed MUC1 genomic gain in 43.7% (387 out of 886) of the samples. Moreover, we identified a highly statistical significant association between MUC1 gene amplification and MUC1 protein expression assessed by immunohistochemistry and Western blot test (P < 0.0001). In conclusion, this study demonstrated that MUC1 copy number increases from normal breast tissue to primary invasive breast carcinomas in correlation with MUC1 protein expression.

Citations

25 citations in Web of Science®
25 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

116 downloads since deposited on 01 Oct 2010
27 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:08 University Research Priority Programs > Systems Biology / Functional Genomics
07 Faculty of Science > Institute of Molecular Life Sciences
Dewey Decimal Classification:570 Life sciences; biology
Language:English
Date:2010
Deposited On:01 Oct 2010 16:03
Last Modified:05 Apr 2016 14:14
Publisher:Elsevier
ISSN:0165-4608
Publisher DOI:https://doi.org/10.1016/j.cancergencyto.2010.05.015
PubMed ID:20682394

Download

[img]
Preview
Content: Accepted Version
Filetype: PDF
Size: 1MB
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations