Quick Search:

uzh logo
Browse by:

Zurich Open Repository and Archive

Maintenance: Tuesday, 5.7.2016, 07:00-08:00

Maintenance work on ZORA and JDB on Tuesday, 5th July, 07h00-08h00. During this time there will be a brief unavailability for about 1 hour. Please be patient.

Permanent URL to this publication: http://dx.doi.org/10.5167/uzh-35627

Seidel, F C; Kokhanowsky, A A; Schaepman, M E (2010). Fast and simple model for atmospheric radiative transfer. Atmospheric Measurement Techniques, 3(4):1129 -1141.

Creative Commons: Attribution 3.0 Unported (CC BY 3.0)
View at publisher


Radiative transfer models (RTMs) are of utmost importance for quantitative remote sensing, especially for compensating atmospheric perturbation. A persistent trade-off exists between approaches that prefer accuracy at the cost of computational complexity, versus those favouring simplicity at the cost of reduced accuracy. We propose an approach in the latter category, using analytical equations, parameterizations and a correction factor to efficiently estimate the effect of molecular multiple scattering. We discuss the approximations together with an analysis of the resulting performance and accuracy. The proposed Simple Model for Atmospheric Radiative Transfer (SMART)decreases the calculation time by a factor of more than 25 in comparison to the bench- mark RTM 6S on the same infrastructure. The approximative computation of the at- mospheric reflectance factor by SMART has an uncertainty ranging from about 5% to 10% for nadir spaceborne and airborne observational conditions. The combination of a large solar zenith angle (SZA) with high aerosol optical depth (AOD) at low wavelengths lead to uncertainties of up to 15%. SMART can be used to simulate the hemispherical conical reflectance factor (HCRF) for spaceborne and airborne sensors, as well as for the retrieval of columnar AOD.


10 citations in Web of Science®
12 citations in Scopus®
Google Scholar™



102 downloads since deposited on 01 Nov 2010
23 downloads since 12 months

Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Institute of Geography
Dewey Decimal Classification:910 Geography & travel
Deposited On:01 Nov 2010 13:00
Last Modified:05 Apr 2016 14:14
Publisher DOI:10.5194/amt-3-1129-2010
Official URL:http://www.atmos-meas-tech.net/3/issue4.html

Users (please log in): suggest update or correction for this item

Repository Staff Only: item control page