UZH-Logo

Analysis of adenovirus trans-complementation-mediated gene expression controlled by melanoma-specific TETP promoter in vitro


Fontecedro, A C; Lutschg, V; Eichhoff, O; Dummer, R; Greber, U F; Hemmi, S (2010). Analysis of adenovirus trans-complementation-mediated gene expression controlled by melanoma-specific TETP promoter in vitro. Virology Journal, 7(1):175.

Abstract

BACKGROUND: Human adenoviruses (Ads) have substantial potential for clinical applications in cancer patients. Conditionally replicating adenoviruses (CRAds) include oncolytic adenoviruses in which expression of the immediate early viral transactivator protein E1A is controlled by a cancer cell-selective promoter. To enhance efficacy, CRAds are further armed to contain therapeutic genes. Due to size constraints of the capsid geometry, the capacity for packaging transgenes into Ads is, however, limited. To overcome this limitation, the employment of E1A-deleted replication-deficient viruses carrying therapeutic genes in combination with replication-competent CRAd vectors expressing E1A in trans has been proposed. Most trans-complementing studies involved transgene expressions from strong ubiquitous promoters, and thereby relied entirely on the cancer cell specificity of the CRAd vector. RESULTS: Here we tested the trans-complementation of a CRAd and a replication-deficient transgene vector containing the same cancer cell-selective promoter. Hereto, we generated two new vectors expressing IL-2 and CD40L from a bicistronic expression cassette under the control of the melanoma/melanocyte-specific tyrosinase enhancer tyrosinase promoter (TETP), which we previously described for the melanoma-specific CRAd vector AdDeltaEP-TETP. These vectors gave rise to tightly controlled melanoma-specific transgene expression levels, which were only 5 to 40-fold lower than those from vectors controlled by the nonselective CMV promoter. Reporter analyses using Ad-CMV-eGFP in combination with AdDeltaEP-TETP revealed a high level of trans-complementation in melanoma cells (up to about 30-fold), but not in non-melanoma cells, unlike the AdCMV-eGFP/wtAd5 binary vector system, which was equally efficient in melanoma and non-melanoma cells. Similar findings were obtained when replacing the transgene vector AdCMV-eGFP with AdCMV-IL-2 or AdCMV-CD40L. However, the combination of the novel AdTETP-CD40L/IL-2 vector with AdDeltaEP-TETP or wtAd5 gave reproducible moderate 3-fold enhancements of IL-2 by trans-complementation only. CONCLUSIONS: The cancer cell-selective TETP tested here did not give the expected enforceable transgene expression typically achieved in the Ad trans-complementing system. Reasons for this could include virus-mediated down regulation of limiting transcription factors, and/or competition for such factors by different promoters. Whether this finding is unique to the particular promoter system tested here, or also occurs with other promoters warrants further investigations.

BACKGROUND: Human adenoviruses (Ads) have substantial potential for clinical applications in cancer patients. Conditionally replicating adenoviruses (CRAds) include oncolytic adenoviruses in which expression of the immediate early viral transactivator protein E1A is controlled by a cancer cell-selective promoter. To enhance efficacy, CRAds are further armed to contain therapeutic genes. Due to size constraints of the capsid geometry, the capacity for packaging transgenes into Ads is, however, limited. To overcome this limitation, the employment of E1A-deleted replication-deficient viruses carrying therapeutic genes in combination with replication-competent CRAd vectors expressing E1A in trans has been proposed. Most trans-complementing studies involved transgene expressions from strong ubiquitous promoters, and thereby relied entirely on the cancer cell specificity of the CRAd vector. RESULTS: Here we tested the trans-complementation of a CRAd and a replication-deficient transgene vector containing the same cancer cell-selective promoter. Hereto, we generated two new vectors expressing IL-2 and CD40L from a bicistronic expression cassette under the control of the melanoma/melanocyte-specific tyrosinase enhancer tyrosinase promoter (TETP), which we previously described for the melanoma-specific CRAd vector AdDeltaEP-TETP. These vectors gave rise to tightly controlled melanoma-specific transgene expression levels, which were only 5 to 40-fold lower than those from vectors controlled by the nonselective CMV promoter. Reporter analyses using Ad-CMV-eGFP in combination with AdDeltaEP-TETP revealed a high level of trans-complementation in melanoma cells (up to about 30-fold), but not in non-melanoma cells, unlike the AdCMV-eGFP/wtAd5 binary vector system, which was equally efficient in melanoma and non-melanoma cells. Similar findings were obtained when replacing the transgene vector AdCMV-eGFP with AdCMV-IL-2 or AdCMV-CD40L. However, the combination of the novel AdTETP-CD40L/IL-2 vector with AdDeltaEP-TETP or wtAd5 gave reproducible moderate 3-fold enhancements of IL-2 by trans-complementation only. CONCLUSIONS: The cancer cell-selective TETP tested here did not give the expected enforceable transgene expression typically achieved in the Ad trans-complementing system. Reasons for this could include virus-mediated down regulation of limiting transcription factors, and/or competition for such factors by different promoters. Whether this finding is unique to the particular promoter system tested here, or also occurs with other promoters warrants further investigations.

Citations

3 citations in Web of Science®
3 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

58 downloads since deposited on 05 Nov 2010
19 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Institute of Molecular Life Sciences
04 Faculty of Medicine > University Hospital Zurich > Dermatology Clinic
Dewey Decimal Classification:570 Life sciences; biology
610 Medicine & health
Language:English
Date:2010
Deposited On:05 Nov 2010 08:33
Last Modified:05 Apr 2016 14:15
Publisher:BioMed Central
ISSN:1743-422X
Publisher DOI:10.1186/1743-422X-7-175
PubMed ID:20670430
Permanent URL: http://doi.org/10.5167/uzh-35858

Download

[img]
Preview
Content: Published Version
Filetype: PDF
Size: 3MB
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations