UZH-Logo

Unrepaired fjord region polycyclic aromatic hydrocarbon-DNA adducts in ras codon 61 mutational hot spots


Buterin, T; Hess, M T; Luneva, N; Geacintov, N E; Amin, S; Kroth, H; Seidel, A; Naegeli, H (2000). Unrepaired fjord region polycyclic aromatic hydrocarbon-DNA adducts in ras codon 61 mutational hot spots. Cancer Research, 60(7):1849-1856.

Abstract

The fjord region diol-epoxide metabolites of polycyclic aromatic hydrocarbons display stronger tumorigenic activities in rodent studies than comparable bay region diol-epoxides, but the molecular basis for this difference between fjord and bay region derivatives is not understood. Here we tested whether the variable effects of these genotoxic metabolites of polycyclic aromatic hydrocarbons may result from different DNA repair reactions. In particular, we compared the repairability of DNA adducts formed by bay region benzo[a]pyrene (B[a]P) diol-epoxides and the structurally similar but significantly more tumorigenic fjord region diol-epoxide metabolites of benzo[c]phenanthrene (B[c]Ph). For that purpose, we incorporated both types of polycyclic aromatic hydrocarbon adducts into known hot spot sites for carcinogen-induced proto-oncogene activation. Synthetic DNA substrates were assembled using a portion of human N-ras or H-ras that includes codon 61, and stereospecific B[a]P or B[c]Ph adducts were synthesized on adenine N6 at the second position of these two ras codon 61 sequences. DNA repair was determined by incubating the site-directed substrates in human cell extracts, followed by electrophoretic visualization of radiolabeled oligonucleotide excision products. These cell-free assays showed that all tested bay region B[a]P-N6-dA adducts are removed by the human nucleotide excision repair system, although excision efficiency varied with the particular stereochemical configuration of each B[a]P residue. In contrast, all fjord region B[c]Ph-N6-dA adducts located in the identical sequence context and with exactly the same stereochemical properties as the corresponding B[a]P lesions were refractory to the nucleotide excision repair process. These findings indicate that the exceptional tumorigenic potency of B[c]Ph or related fjord region diol-epoxides may be attributed, at least in part, to slow repair of the stable base adducts deriving from the reaction of these compounds with DNA.

The fjord region diol-epoxide metabolites of polycyclic aromatic hydrocarbons display stronger tumorigenic activities in rodent studies than comparable bay region diol-epoxides, but the molecular basis for this difference between fjord and bay region derivatives is not understood. Here we tested whether the variable effects of these genotoxic metabolites of polycyclic aromatic hydrocarbons may result from different DNA repair reactions. In particular, we compared the repairability of DNA adducts formed by bay region benzo[a]pyrene (B[a]P) diol-epoxides and the structurally similar but significantly more tumorigenic fjord region diol-epoxide metabolites of benzo[c]phenanthrene (B[c]Ph). For that purpose, we incorporated both types of polycyclic aromatic hydrocarbon adducts into known hot spot sites for carcinogen-induced proto-oncogene activation. Synthetic DNA substrates were assembled using a portion of human N-ras or H-ras that includes codon 61, and stereospecific B[a]P or B[c]Ph adducts were synthesized on adenine N6 at the second position of these two ras codon 61 sequences. DNA repair was determined by incubating the site-directed substrates in human cell extracts, followed by electrophoretic visualization of radiolabeled oligonucleotide excision products. These cell-free assays showed that all tested bay region B[a]P-N6-dA adducts are removed by the human nucleotide excision repair system, although excision efficiency varied with the particular stereochemical configuration of each B[a]P residue. In contrast, all fjord region B[c]Ph-N6-dA adducts located in the identical sequence context and with exactly the same stereochemical properties as the corresponding B[a]P lesions were refractory to the nucleotide excision repair process. These findings indicate that the exceptional tumorigenic potency of B[c]Ph or related fjord region diol-epoxides may be attributed, at least in part, to slow repair of the stable base adducts deriving from the reaction of these compounds with DNA.

Citations

93 citations in Web of Science®
96 citations in Scopus®
Google Scholar™

Downloads

1 download since deposited on 09 Nov 2010
0 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:05 Vetsuisse Faculty > Institute of Veterinary Pharmacology and Toxicology
Dewey Decimal Classification:570 Life sciences; biology
Language:English
Date:2000
Deposited On:09 Nov 2010 17:17
Last Modified:05 Apr 2016 14:15
Publisher:American Association for Cancer Research
ISSN:0008-5472
Free access at:Official URL. An embargo period may apply.
Official URL:http://cancerres.aacrjournals.org/content/60/7/1849.long
PubMed ID:10766171
Permanent URL: http://doi.org/10.5167/uzh-35868

Download

[img]Filetype: PDF - Registered users only
Size: 894kB

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations