UZH-Logo

Maintenance Infos

CO releasing properties and cytoprotective effect of cis-trans-[Re(II)(CO)2Br2L2]n complexes


Zobi, F; Degonda, A; Schaub, M C; Bogdanova, A Y (2010). CO releasing properties and cytoprotective effect of cis-trans-[Re(II)(CO)2Br2L2]n complexes. Inorganic Chemistry, 49(16):7313-7322.

Abstract

The carbon monoxide (CO) releasing properties of a series of rhenium(II)-based complexes of general formula cis-trans-[Re(II)(CO)(2)Br(2)L(2)](n) and cis-trans-[Re(II)(CO)(2)Br(2)N[intersection]N] (where L = monodentate and N[intersection]N = bidentate ligand) are reported. Complexes evaluated in this study were obtained from direct ligand substitution reactions of the cis-[Re(II)(CO)(2)Br(4)](2-) synthon (2) recently described. (1) All molecules have been fully characterized. The solid-state structures of the cis-trans-[Re(II)(CO)(2)Br(2)L(2)] (with L = N-methylimidazole (3), benzimidazole (4) and 4-picoline (5)) and the cis-trans-[Re(II)(CO)(2)Br(2)N[intersection]N] (with N[intersection]N = 4,4'-dimethyl-2,2'-bipyridine (8) and 2,2'-dipyridylamine (11)) adducts are presented. The release of CO from the cis-trans-[Re(II)(CO)(2)Br(2)L(2)](n) complexes was assessed spectrophotometrically by measuring the conversion of deoxymyoglobin (Mb) to carbonmonoxy myoglobin (MbCO). Only compounds bearing monodentate ligands were found to liberate CO. The rate of CO release was found to be pH dependent with half-lives (t(1/2)) under physiological conditions (25 degrees C, 0.1 M phosphate buffer, and pH 7.4) varying from ca. 6-43 min. At lower pH values, the time required to fully saturate Mb with CO liberated from the metal complexes gradually decreased. Complex 2 and the cis-trans-[Re(II)(CO)(2)Br(2)(Im)(2)] adduct (with Im = imidazole (6)) show a protective action against "ischemia-reperfusion" stress of neonatal rat ventricular cardiomyocytes in culture.

The carbon monoxide (CO) releasing properties of a series of rhenium(II)-based complexes of general formula cis-trans-[Re(II)(CO)(2)Br(2)L(2)](n) and cis-trans-[Re(II)(CO)(2)Br(2)N[intersection]N] (where L = monodentate and N[intersection]N = bidentate ligand) are reported. Complexes evaluated in this study were obtained from direct ligand substitution reactions of the cis-[Re(II)(CO)(2)Br(4)](2-) synthon (2) recently described. (1) All molecules have been fully characterized. The solid-state structures of the cis-trans-[Re(II)(CO)(2)Br(2)L(2)] (with L = N-methylimidazole (3), benzimidazole (4) and 4-picoline (5)) and the cis-trans-[Re(II)(CO)(2)Br(2)N[intersection]N] (with N[intersection]N = 4,4'-dimethyl-2,2'-bipyridine (8) and 2,2'-dipyridylamine (11)) adducts are presented. The release of CO from the cis-trans-[Re(II)(CO)(2)Br(2)L(2)](n) complexes was assessed spectrophotometrically by measuring the conversion of deoxymyoglobin (Mb) to carbonmonoxy myoglobin (MbCO). Only compounds bearing monodentate ligands were found to liberate CO. The rate of CO release was found to be pH dependent with half-lives (t(1/2)) under physiological conditions (25 degrees C, 0.1 M phosphate buffer, and pH 7.4) varying from ca. 6-43 min. At lower pH values, the time required to fully saturate Mb with CO liberated from the metal complexes gradually decreased. Complex 2 and the cis-trans-[Re(II)(CO)(2)Br(2)(Im)(2)] adduct (with Im = imidazole (6)) show a protective action against "ischemia-reperfusion" stress of neonatal rat ventricular cardiomyocytes in culture.

Citations

46 citations in Web of Science®
49 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

94 downloads since deposited on 11 Nov 2010
26 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Department of Chemistry
04 Faculty of Medicine > Institute of Pharmacology and Toxicology
05 Vetsuisse Faculty > Institute of Veterinary Physiology
04 Faculty of Medicine > Center for Integrative Human Physiology
Dewey Decimal Classification:570 Life sciences; biology
610 Medicine & health
540 Chemistry
Language:English
Date:July 2010
Deposited On:11 Nov 2010 11:45
Last Modified:05 Apr 2016 14:15
Publisher:American Chemical Society
ISSN:0020-1669
Additional Information:This document is the Accepted Manuscript version of a Published Work that appeared in final form in Inorganic Chemistry, copyright © American Chemical Society after peer review and technical editing by the publisher.
Publisher DOI:10.1021/ic100458j
PubMed ID:20690741
Permanent URL: http://doi.org/10.5167/uzh-35975

Download

[img]
Preview
Content: Accepted Version
Filetype: PDF
Size: 5MB
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations