UZH-Logo

Protonation-Dependent Binding of Ruthenium Bipyridyl Complexes to the Anatase(101) Surface


Schiffmann, F; VandeVondele, J; Hutter, J; Wirz, R; Urakawa, A; Baiker, A (2010). Protonation-Dependent Binding of Ruthenium Bipyridyl Complexes to the Anatase(101) Surface. Journal of Physical Chemistry C, 114(18):8398-8404.

Abstract

In dye-sensitized solar cells, three structurally similar dyes are commonly employed to sensitize anatase nanocrystals, namely, the cis-bis(isothiocyanato)bis(2,2'-bipyridyl-4,4'-dicarboxylato)-ruthenium( II) dye (N3) and its twice deprotonated (N719) and completely deprotonated (N712) forms. Using density functional theory, several possible binding geometries of these dyes are identified on the anatase(101) surface. Computed relative energies show that protonation of the surface can strongly influence the relative stabilities of these configurations and could induce a conformational transition from double bidentate-bridged binding to mixed bidentate/monodentate binding. Attenuated total reflection (ATR)-IR experiments and computed vibrational spectra provide additional support for a protonation-dependent equilibrium between two different configurations. Furthermore, self-assembly in chains of hydrogen-bonded dye molecules seems structurally favorable on the anatase(101) surface; for enantiopure dyes, a packing density of 0.744/nm(2) could be achieved.

In dye-sensitized solar cells, three structurally similar dyes are commonly employed to sensitize anatase nanocrystals, namely, the cis-bis(isothiocyanato)bis(2,2'-bipyridyl-4,4'-dicarboxylato)-ruthenium( II) dye (N3) and its twice deprotonated (N719) and completely deprotonated (N712) forms. Using density functional theory, several possible binding geometries of these dyes are identified on the anatase(101) surface. Computed relative energies show that protonation of the surface can strongly influence the relative stabilities of these configurations and could induce a conformational transition from double bidentate-bridged binding to mixed bidentate/monodentate binding. Attenuated total reflection (ATR)-IR experiments and computed vibrational spectra provide additional support for a protonation-dependent equilibrium between two different configurations. Furthermore, self-assembly in chains of hydrogen-bonded dye molecules seems structurally favorable on the anatase(101) surface; for enantiopure dyes, a packing density of 0.744/nm(2) could be achieved.

Citations

58 citations in Web of Science®
64 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

197 downloads since deposited on 23 Dec 2010
11 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Department of Chemistry
Dewey Decimal Classification:540 Chemistry
Language:English
Date:May 2010
Deposited On:23 Dec 2010 09:50
Last Modified:05 Apr 2016 14:15
Publisher:American Chemical Society
ISSN:1932-7447
Additional Information:This document is the Accepted Manuscript version of a Published Work that appeared in final form in Journal of Physical Chemistry C, copyright © American Chemical Society after peer review and technical editing by the publisher.
Publisher DOI:10.1021/jp100268r
Other Identification Number:ISI:000277280800040
Permanent URL: http://doi.org/10.5167/uzh-36016

Download

[img]Filetype: PDF - Registered users only
Size: 3MB
View at publisher

[img]
Preview
Content: Accepted Version
Filetype: PDF
Size: 10MB

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations