UZH-Logo

Maintenance Infos

Hydrogen forms in water by proton transfer to a distorted electron


Marsalek, O; Frigato, T; VandeVondele, J; Bradforth, S E; Schmidt, B; Schutte, C; Jungwirth, P (2010). Hydrogen forms in water by proton transfer to a distorted electron. Journal of Physical Chemistry. B, 114(2):915-920.

Abstract

Solvated electrons are ubiquitous intermediates in radiation-induced processes, with their lifetime being determined by quenching processes, Such as the direct reaction with protons under acidic conditions. Ab initio molecular dynamics simulations allow its to unravel with molecular resolution the ultrafast reaction mechanism by which the electron and proton react in water. The path to a Successful reaction involves a distortion and contraction of the hydrated electron and a rapid proton motion along a chain of hydrogen bonds, terminating on the water molecule most protruding into the electron cloud. This fundamental reaction is thus decidedly shown to be of a proton-transfer rather than electron-transfer character. Due to the desolvation penalty connected with breaking of the hydration shells of these charged particles, the reaction is, however, not diffusion-limited, in agreement with the interpretation of kinetics measurements.

Solvated electrons are ubiquitous intermediates in radiation-induced processes, with their lifetime being determined by quenching processes, Such as the direct reaction with protons under acidic conditions. Ab initio molecular dynamics simulations allow its to unravel with molecular resolution the ultrafast reaction mechanism by which the electron and proton react in water. The path to a Successful reaction involves a distortion and contraction of the hydrated electron and a rapid proton motion along a chain of hydrogen bonds, terminating on the water molecule most protruding into the electron cloud. This fundamental reaction is thus decidedly shown to be of a proton-transfer rather than electron-transfer character. Due to the desolvation penalty connected with breaking of the hydration shells of these charged particles, the reaction is, however, not diffusion-limited, in agreement with the interpretation of kinetics measurements.

Citations

24 citations in Web of Science®
25 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

194 downloads since deposited on 23 Dec 2010
22 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Department of Chemistry
Dewey Decimal Classification:540 Chemistry
Language:English
Date:2010
Deposited On:23 Dec 2010 12:04
Last Modified:05 Apr 2016 14:15
Publisher:American Chemical Society
ISSN:1520-5207
Additional Information:This document is the Accepted Manuscript version of a Published Work that appeared in final form in Journal of Physical Chemistry. B, copyright © American Chemical Society after peer review and technical editing by the publisher.
Publisher DOI:10.1021/jp908986z
Permanent URL: http://doi.org/10.5167/uzh-36022

Download

[img]
Filetype: PDF - Registered users only
Size: 4MB
View at publisher
[img]
Preview
Content: Accepted Version
Filetype: PDF
Size: 2MB

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations