UZH-Logo

Maintenance Infos

Dual-energy computed tomography for the differentiation of uric acid stones: ex vivo performance evaluation


Stolzmann, P; Scheffel, H; Rentsch, K; Schertler, T; Frauenfelder, T; Leschka, S; Sulser, T; Marincek, B; Alkadhi, H (2008). Dual-energy computed tomography for the differentiation of uric acid stones: ex vivo performance evaluation. Urological Research, 36(3-4):133-138.

Abstract

We assessed the potential of dual-energy computed tomography (CT) for the differentiation between uric acid (UA)-containing and non-UA-containing urinary stones. Forty urinary stones of 16 different compositions in two sizes (<and>or=5 mm) were examined in an ex vivo model. Thirty stones consisted of pure calcium oxalate (whewellite or wheddellite), calcium phosphate (apatite, brushite, or vaterite), ammonium magnesium phosphate (struvite), UA, ammonium acid urate, ammonium phosphate, sodium hydrogen urate, or cystine, and ten stones were of mixed composition (UA-sodium hydrogen urate, whewellite-urate, wheddellite-urate, whewellite-brushite, or whewellite-brushite-struvite). Scans were performed using dual-source CT in a dual-energy mode with the tubes simultaneously operating at 80 and 140 kV. Two readers analysed the data with respect to stone attenuation at each energy level. The stones were classified as UA- or non-UA-containing using manual attenuation measurements and software analysis results. Sensitivity, specificity, PPV, and NPV were calculated using crystallographic stone analysis as the gold standard. Twenty-six out of 40 stones (65%) contained no UA; 14 stones (35%) contained UA. When compared with UA-containing stones, the differences in attenuation values at 80 and 140 kV were significantly (P < 0.001) higher in stones containing no UA. The software automatically mapped 39/40 stones (98%). Only one (2%) 2 mm UA-stone was missed. The software correctly classified all detected stones as UA- or non-UA-containing. The attenuation values of the missed stone were manually plotted into the analysis sheet which allowed for the correct classification of the stone (containing UA). Therefore, the sensitivity, specificity, PPV, and NPV for the detection of UA-containing stones was 100%. Ex vivo experience indicates that differentiation between UA- and non-UA-containing stones can be accurately performed using dual-source dual-energy CT.

Abstract

We assessed the potential of dual-energy computed tomography (CT) for the differentiation between uric acid (UA)-containing and non-UA-containing urinary stones. Forty urinary stones of 16 different compositions in two sizes (<and>or=5 mm) were examined in an ex vivo model. Thirty stones consisted of pure calcium oxalate (whewellite or wheddellite), calcium phosphate (apatite, brushite, or vaterite), ammonium magnesium phosphate (struvite), UA, ammonium acid urate, ammonium phosphate, sodium hydrogen urate, or cystine, and ten stones were of mixed composition (UA-sodium hydrogen urate, whewellite-urate, wheddellite-urate, whewellite-brushite, or whewellite-brushite-struvite). Scans were performed using dual-source CT in a dual-energy mode with the tubes simultaneously operating at 80 and 140 kV. Two readers analysed the data with respect to stone attenuation at each energy level. The stones were classified as UA- or non-UA-containing using manual attenuation measurements and software analysis results. Sensitivity, specificity, PPV, and NPV were calculated using crystallographic stone analysis as the gold standard. Twenty-six out of 40 stones (65%) contained no UA; 14 stones (35%) contained UA. When compared with UA-containing stones, the differences in attenuation values at 80 and 140 kV were significantly (P < 0.001) higher in stones containing no UA. The software automatically mapped 39/40 stones (98%). Only one (2%) 2 mm UA-stone was missed. The software correctly classified all detected stones as UA- or non-UA-containing. The attenuation values of the missed stone were manually plotted into the analysis sheet which allowed for the correct classification of the stone (containing UA). Therefore, the sensitivity, specificity, PPV, and NPV for the detection of UA-containing stones was 100%. Ex vivo experience indicates that differentiation between UA- and non-UA-containing stones can be accurately performed using dual-source dual-energy CT.

Citations

59 citations in Web of Science®
65 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

6 downloads since deposited on 06 Oct 2008
0 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > University Hospital Zurich > Urological Clinic
04 Faculty of Medicine > University Hospital Zurich > Institute of Clinical Chemistry
04 Faculty of Medicine > University Hospital Zurich > Clinic for Diagnostic and Interventional Radiology
Dewey Decimal Classification:610 Medicine & health
540 Chemistry
Language:English
Date:2008
Deposited On:06 Oct 2008 12:27
Last Modified:13 Sep 2016 07:29
Publisher:Springer
ISSN:0300-5623
Additional Information:The original publication is available at www.springerlink.com
Publisher DOI:https://doi.org/10.1007/s00240-008-0140-x
PubMed ID:18545993

Download

[img]
Filetype: PDF - Registered users only
Size: 1MB
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations