Quick Search:

uzh logo
Browse by:
bullet
bullet
bullet
bullet

Zurich Open Repository and Archive 

Permanent URL to this publication: http://dx.doi.org/10.5167/uzh-36087

Buechel, R R; Herzog, B A; Husmann, L; Burger, I A; Pazhenkottil, A P; Treyer, V; Valenta, I; von Schulthess, P; Nkoulou, R; Wyss, C A; Kaufmann, P A (2010). Ultrafast nuclear myocardial perfusion imaging on a new gamma camera with semiconductor detector technique: first clinical validation. European Journal of Nuclear Medicine and Molecular Imaging, 37(4):773-778.

[img] PDF - Registered users only
209kB

Abstract

PURPOSE: To assess the diagnostic performance of a novel ultrafast cardiac gamma camera with cadmium-zinc-telluride (CZT) solid-state semiconductor detectors for nuclear myocardial perfusion imaging (MPI). METHODS: The study group comprised 75 consecutive patients (55 men, BMI range 19-45 kg/m(2)) who underwent a 1-day (99m)Tc-tetrofosmin adenosine-stress/rest imaging protocol. Scanning was performed first on a conventional dual-detector SPECT gamma camera (Ventri, GE Healthcare) with a 15-min acquisition time each for stress and rest. All scans were immediately repeated on an ultrafast CZT camera (Discovery 530 NMc, GE Healthcare) with a 3-min scan time for stress and a 2-min scan time for rest. Clinical agreement (normal, ischaemia, scar) between CZT and SPECT was assessed for each patient and for each coronary territory using SPECT MPI as the reference standard. Segmental myocardial tracer uptake values (percent of maximum) using a 20-segment model and left ventricular ejection fraction (EF) values obtained using CZT were compared with those obtained using conventional SPECT by intraclass correlation and by calculating Bland-Altman limits of agreement. RESULTS: There was excellent clinical agreement between CZT and conventional SPECT on a per-patient basis (96.0%) and on a per-vessel territory basis (96.4%) as shown by a highly significant correlation between segmental tracer uptake values (r=0.901, p<0.001). Similarly, EF values for both scanners were highly correlated (r=0.976, p<0.001) with narrow Bland-Altman limits of agreement (-5.5-10.6%). CONCLUSION: The novel CZT camera allows a more than fivefold reduction in scan time and provides clinical information equivalent to conventional standard SPECT MPI.

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Center for Integrative Human Physiology
04 Faculty of Medicine > University Hospital Zurich > Clinic for Nuclear Medicine
04 Faculty of Medicine > University Hospital Zurich > Clinic for Cardiology
DDC:570 Life sciences; biology
610 Medicine & health
Language:English
Date:April 2010
Deposited On:12 Nov 2010 15:25
Last Modified:13 Jan 2014 12:26
Publisher:Springer
ISSN:1619-7070
Publisher DOI:10.1007/s00259-009-1375-7
PubMed ID:20107783
Citations:Web of Science®. Times Cited: 59
Google Scholar™
Scopus®. Citation Count: 66

Users (please log in): suggest update or correction for this item

Repository Staff Only: item control page