UZH-Logo

Cardiac output but not stroke volume is similar in a Wingate and VO2peak test in young men


Fontana, P; Betschon, K; Boutellier, U; Toigo, M (2011). Cardiac output but not stroke volume is similar in a Wingate and VO2peak test in young men. European Journal of Applied Physiology, 111(1):155-158.

Abstract

Wingate test (WT) training programmes lasting 2-3 weeks lead to improved peak oxygen consumption. If a single 30 s WT was capable of significantly increasing stroke volume and cardiac output, the increase in peak oxygen consumption could possibly be explained by improved oxygen delivery. Thus, we investigated whether a single WT increases stroke volume and cardiac output to similar levels than those obtained at peak exercise during a graded cycling exercise test (GXT) to exhaustion. Fifteen healthy young men (peak oxygen consumption 45.0 ± 5.3 ml kg(-1) min(-1)) performed one WT and one GXT on separate days in randomised order. During the tests, we estimated cardiac output using inert gas rebreathing (nitrous oxide and sulphur hexafluoride) and subsequently calculated stroke volume. We found that cardiac output was similar (18.2 ± 3.3 vs. 17.9 ± 2.6 l min(-1); P = 0.744), stroke volume was higher (127 ± 37 vs. 94 ± 15 ml; P < 0.001), and heart rate was lower (149 ± 26 vs. 190 ± 12 beats min(-1); P < 0.001) at the end (27 ± 2 s) of a WT as compared to peak exercise during a GXT. Our results suggest that a single WT produces a haemodynamic response which is characterised by similar cardiac output, higher stroke volume and lower heart rate as compared to peak exercise during a GXT.

Wingate test (WT) training programmes lasting 2-3 weeks lead to improved peak oxygen consumption. If a single 30 s WT was capable of significantly increasing stroke volume and cardiac output, the increase in peak oxygen consumption could possibly be explained by improved oxygen delivery. Thus, we investigated whether a single WT increases stroke volume and cardiac output to similar levels than those obtained at peak exercise during a graded cycling exercise test (GXT) to exhaustion. Fifteen healthy young men (peak oxygen consumption 45.0 ± 5.3 ml kg(-1) min(-1)) performed one WT and one GXT on separate days in randomised order. During the tests, we estimated cardiac output using inert gas rebreathing (nitrous oxide and sulphur hexafluoride) and subsequently calculated stroke volume. We found that cardiac output was similar (18.2 ± 3.3 vs. 17.9 ± 2.6 l min(-1); P = 0.744), stroke volume was higher (127 ± 37 vs. 94 ± 15 ml; P < 0.001), and heart rate was lower (149 ± 26 vs. 190 ± 12 beats min(-1); P < 0.001) at the end (27 ± 2 s) of a WT as compared to peak exercise during a GXT. Our results suggest that a single WT produces a haemodynamic response which is characterised by similar cardiac output, higher stroke volume and lower heart rate as compared to peak exercise during a GXT.

Citations

6 citations in Web of Science®
6 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

106 downloads since deposited on 15 Nov 2010
26 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Center for Integrative Human Physiology
04 Faculty of Medicine > Institute of Physiology
07 Faculty of Science > Institute of Physiology
Dewey Decimal Classification:570 Life sciences; biology
610 Medicine & health
Language:English
Date:2011
Deposited On:15 Nov 2010 08:24
Last Modified:05 Apr 2016 14:16
Publisher:Springer
ISSN:1439-6319
Additional Information:The original publication is available at www.springerlink.com
Publisher DOI:10.1007/s00421-010-1645-x
PubMed ID:20848127
Permanent URL: http://doi.org/10.5167/uzh-36092

Download

[img]
Preview
Content: Accepted Version
Filetype: PDF
Size: 1MB
View at publisher
[img]
Filetype: PDF - Registered users only
Size: 1MB

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations