UZH-Logo

Maintenance Infos

(13)N-ammonia myocardial perfusion imaging with a PET/CT scanner: impact on clinical decision making and cost-effectiveness


Siegrist, P T; Husmann, L; Knabenhans, M; Gaemperli, O; Valenta, I; Hoefflinghaus, T; Scheffel, H; Stolzmann, P; Alkadhi, H; Kaufmann, P A (2008). (13)N-ammonia myocardial perfusion imaging with a PET/CT scanner: impact on clinical decision making and cost-effectiveness. European Journal of Nuclear Medicine and Molecular Imaging, 35(5):889-895.

Abstract

PURPOSE: The purpose of the study is to determine the impact of 13N-ammonia positron emission tomography (PET) myocardial perfusion imaging (MPI) on clinical decision making and its cost-effectiveness. MATERIALS AND METHODS: One hundred consecutive patients (28 women, 72 men; mean age 60.9 +/- 12.0 years; range 24-85 years) underwent 13N-ammonia PET scanning (and computed tomography, used only for attenuation correction) to assess myocardial perfusion in patients with known (n = 79) or suspected (n = 8) coronary artery disease (CAD), or for suspected small-vessel disease (SVD; n = 13). Before PET, the referring physician was asked to determine patient treatment if PET would not be available. Four weeks later, PET patient management was reassessed for each patient individually. RESULTS: Before PET management strategies would have been: diagnostic angiography (62 of 100 patients), diagnostic angiography and percutaneous coronary intervention (PCI; 6 of 100), coronary artery bypass grafting (CABG; 3 of 100), transplantation (1 of 100), or conservative medical treatment (28 of 100). After PET scanning, treatment strategies were altered in 78 patients leading to: diagnostic angiography (0 of 100), PCI (20 of 100), CABG (3 of 100), transplantation (1 of 100), or conservative medical treatment (76 of 100). Patient management followed the recommendations of PET findings in 97% of the cases. Cost-effectiveness analysis revealed lower costs of <euro>206/patient as a result of PET scanning. CONCLUSION: In a population with a high prevalence of known CAD, PET is cost-effective and has an important impact on patient management.

PURPOSE: The purpose of the study is to determine the impact of 13N-ammonia positron emission tomography (PET) myocardial perfusion imaging (MPI) on clinical decision making and its cost-effectiveness. MATERIALS AND METHODS: One hundred consecutive patients (28 women, 72 men; mean age 60.9 +/- 12.0 years; range 24-85 years) underwent 13N-ammonia PET scanning (and computed tomography, used only for attenuation correction) to assess myocardial perfusion in patients with known (n = 79) or suspected (n = 8) coronary artery disease (CAD), or for suspected small-vessel disease (SVD; n = 13). Before PET, the referring physician was asked to determine patient treatment if PET would not be available. Four weeks later, PET patient management was reassessed for each patient individually. RESULTS: Before PET management strategies would have been: diagnostic angiography (62 of 100 patients), diagnostic angiography and percutaneous coronary intervention (PCI; 6 of 100), coronary artery bypass grafting (CABG; 3 of 100), transplantation (1 of 100), or conservative medical treatment (28 of 100). After PET scanning, treatment strategies were altered in 78 patients leading to: diagnostic angiography (0 of 100), PCI (20 of 100), CABG (3 of 100), transplantation (1 of 100), or conservative medical treatment (76 of 100). Patient management followed the recommendations of PET findings in 97% of the cases. Cost-effectiveness analysis revealed lower costs of <euro>206/patient as a result of PET scanning. CONCLUSION: In a population with a high prevalence of known CAD, PET is cost-effective and has an important impact on patient management.

Citations

21 citations in Web of Science®
25 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

4 downloads since deposited on 06 Oct 2008
0 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > University Hospital Zurich > Clinic for Nuclear Medicine
04 Faculty of Medicine > Center for Integrative Human Physiology
04 Faculty of Medicine > University Hospital Zurich > Clinic for Diagnostic and Interventional Radiology
Dewey Decimal Classification:570 Life sciences; biology
610 Medicine & health
Language:English
Date:2008
Deposited On:06 Oct 2008 10:46
Last Modified:13 Sep 2016 07:29
Publisher:Springer
ISSN:1619-7070
Publisher DOI:10.1007/s00259-007-0647-3
PubMed ID:18057933
Permanent URL: http://doi.org/10.5167/uzh-3622

Download

[img]
Filetype: PDF - Registered users only
Size: 1MB
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations