UZH-Logo

Maintenance Infos

Direct Access to Working Memory Contents


Bialkova, S; Oberauer, Klaus (2010). Direct Access to Working Memory Contents. Experimental Psychology, 57(5):383-389.

Abstract

In two experiments participants held in working memory (WM) three digits in three different colors, and updated individual digits with the results of arithmetic equations presented in one of the colors. In the memory-access condition, a digit from WM had to be used as the first
number in the equation; in the no-access condition, complete equations were presented so that no information from WM had to be accessed for the computation. Updating a digit not updated in the preceding step took longer than updating the same digit as in the preceding step, a time
difference referred to as object-switch costs. Object-switch costs were equal in access and no-access equations, implying that they did not reflect the time to retrieve a new digit from WM. Access equations were completed as fast as no-access equations, implying that access to information in WM is as fast as reading the same information. No-access equations were slowed by a mismatch between the first digit of the presented equation and the to-be-updated digit in WM, showing that this digit is automatically accessed even when not needed. It is concluded that contents and their
contexts form composites in WM that are necessarily accessed together.

In two experiments participants held in working memory (WM) three digits in three different colors, and updated individual digits with the results of arithmetic equations presented in one of the colors. In the memory-access condition, a digit from WM had to be used as the first
number in the equation; in the no-access condition, complete equations were presented so that no information from WM had to be accessed for the computation. Updating a digit not updated in the preceding step took longer than updating the same digit as in the preceding step, a time
difference referred to as object-switch costs. Object-switch costs were equal in access and no-access equations, implying that they did not reflect the time to retrieve a new digit from WM. Access equations were completed as fast as no-access equations, implying that access to information in WM is as fast as reading the same information. No-access equations were slowed by a mismatch between the first digit of the presented equation and the to-be-updated digit in WM, showing that this digit is automatically accessed even when not needed. It is concluded that contents and their
contexts form composites in WM that are necessarily accessed together.

Citations

3 citations in Web of Science®
3 citations in Scopus®
Google Scholar™

Altmetrics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:06 Faculty of Arts > Institute of Psychology
Dewey Decimal Classification:150 Psychology
Date:2010
Deposited On:03 Nov 2010 09:34
Last Modified:05 Apr 2016 14:16
Publisher:Hogrefe & Huber
ISSN:1618-3169
Publisher DOI:https://doi.org/10.1027/1618-3169/a000046

Download

Full text not available from this repository.View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations