UZH-Logo

Maintenance Infos

Insights into rock-ice avalanche dynamics by combined analysis of seismic recordings and a numerical avalanche model


Schneider, D; Bartelt, P; Caplan-Auerbach, J; Christen, M; Huggel, C; McArdell, B W (2010). Insights into rock-ice avalanche dynamics by combined analysis of seismic recordings and a numerical avalanche model. Journal of Geophysical Research, 115(F04026):1-20.

Abstract

Rock-ice avalanches larger than 1x106 m3 are high magnitude low frequency events that may occur in all ice-covered high mountain areas around the world and can cause extensive damage if they reach populated regions. The temporal and spatial evolution of the seismic signature from two events was analyzed and recordings at selected stations were compared to numerical model results of avalanche propagation. The first event is a rock-ice avalanche from Iliamna volcano in Alaska which serves as a 'natural laboratory' with simple geometric conditions. The second one originated on Aoraki/Mt. Cook, New Zealand Southern Alps, and is characterized by a much more complex topography. A dynamic numerical model was used to calculate total avalanche momentum, total kinetic energy, and total frictional work rate, amongst other parameters. These three parameters correlate with characteristics of the seismic signature such as duration and signal envelopes, while other parameters such as flow depths, flow path and deposition geometry are well in agreement with observations. The total frictional work rate shows the best correlation with the absolute seismic amplitude suggesting that it may be used as an independent model evaluation criterion and in certain cases as model calibration parameter. The good fit is likely because the total frictional work rate represents the avalanche’s energy loss rate, part of which is captured by the seismometer. Deviations between corresponding calculated and measured parameters result from site and path effects which affect the recorded seismic signal, or indicate deficiencies of the numerical model. The seismic recordings contain additional information about when an avalanche reaches changes in topography along the runout path and enable more accurate velocity calculations. The new concept of direct comparison of seismic and avalanche modelling data helps to constrain the numerical model input parameters and to improve the understanding of (rock-ice) avalanche dynamics.

Rock-ice avalanches larger than 1x106 m3 are high magnitude low frequency events that may occur in all ice-covered high mountain areas around the world and can cause extensive damage if they reach populated regions. The temporal and spatial evolution of the seismic signature from two events was analyzed and recordings at selected stations were compared to numerical model results of avalanche propagation. The first event is a rock-ice avalanche from Iliamna volcano in Alaska which serves as a 'natural laboratory' with simple geometric conditions. The second one originated on Aoraki/Mt. Cook, New Zealand Southern Alps, and is characterized by a much more complex topography. A dynamic numerical model was used to calculate total avalanche momentum, total kinetic energy, and total frictional work rate, amongst other parameters. These three parameters correlate with characteristics of the seismic signature such as duration and signal envelopes, while other parameters such as flow depths, flow path and deposition geometry are well in agreement with observations. The total frictional work rate shows the best correlation with the absolute seismic amplitude suggesting that it may be used as an independent model evaluation criterion and in certain cases as model calibration parameter. The good fit is likely because the total frictional work rate represents the avalanche’s energy loss rate, part of which is captured by the seismometer. Deviations between corresponding calculated and measured parameters result from site and path effects which affect the recorded seismic signal, or indicate deficiencies of the numerical model. The seismic recordings contain additional information about when an avalanche reaches changes in topography along the runout path and enable more accurate velocity calculations. The new concept of direct comparison of seismic and avalanche modelling data helps to constrain the numerical model input parameters and to improve the understanding of (rock-ice) avalanche dynamics.

Citations

29 citations in Web of Science®
33 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

71 downloads since deposited on 19 Jan 2011
9 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Institute of Geography
Dewey Decimal Classification:910 Geography & travel
Language:English
Date:2 December 2010
Deposited On:19 Jan 2011 09:52
Last Modified:05 Apr 2016 14:17
Publisher:American Geophysical Union
ISSN:0148-0227
Publisher DOI:10.1029/2010JF001734
Permanent URL: http://doi.org/10.5167/uzh-36456

Download

[img]
Preview
Filetype: PDF
Size: 5MB
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations