UZH-Logo

Maintenance Infos

Methoden der statistischen Inferenz: Likelihood und Bayes


Held, L (2008). Methoden der statistischen Inferenz: Likelihood und Bayes. Heidelberg: Spektrum Akademischer Verlag.

Abstract

Methoden der statistischen Inferenz werden in fast allen Bereichen der empirischen Wissenschaften eingesetzt, um aus Daten zu lernen. Dieses Buch gibt eine angewandte Einführung in Likelihood- und Bayes-Verfahren, die zwei wichtigsten Ansätze, um Parameter in stochastischen Modellen zu schätzen und die damit verbundene Unsicherheit zu quantifizieren. Eigene Kapitel widmen sich der Prognose zukünftiger Beobachtungen und der Modellwahl.

Ohne Unterstützung durch Computer ist der Einsatz dieser Methoden heute undenkbar. Dieses Buch legt besonderes Gewicht auf die Beschreibung der nötigen algorithmischen Verfahren, von der numerischen Optimierung bis hin zur Monte-Carlo Integration. Alle Beispiele sind in der Open-Source Statistik-Software R gerechnet, wobei Teile des Programm-Codes explizit abgedruckt sind. An zahlreichen Beispielen aus Medizin, Epidemiologie und Genetik wird der Einsatz der Verfahren in der Praxis deutlich gemacht. Der Leser kann durch Bearbeitung von Übungsaufgaben am Ende jedes Kapitels (mit ausgewählten Lösungen auf der Website) den Stoff vertiefen.

Dieses Buch richtet sich in erster Linie an Studierende der Statistik, Mathematik und Informatik. Aber auch Interessierten aus Bereichen der Lebenswissenschaften, wie etwa der Biologie oder den Umweltwissenschaften wird es eine adäquate Einführung in die Methoden der statistischen Inferenz geben. Nötige Kenntnisse der Stochastik, Numerik und Analysis, die über ein elementares Niveau hinausgehen, sind in eigenen Anhängen beschrieben.

Methoden der statistischen Inferenz werden in fast allen Bereichen der empirischen Wissenschaften eingesetzt, um aus Daten zu lernen. Dieses Buch gibt eine angewandte Einführung in Likelihood- und Bayes-Verfahren, die zwei wichtigsten Ansätze, um Parameter in stochastischen Modellen zu schätzen und die damit verbundene Unsicherheit zu quantifizieren. Eigene Kapitel widmen sich der Prognose zukünftiger Beobachtungen und der Modellwahl.

Ohne Unterstützung durch Computer ist der Einsatz dieser Methoden heute undenkbar. Dieses Buch legt besonderes Gewicht auf die Beschreibung der nötigen algorithmischen Verfahren, von der numerischen Optimierung bis hin zur Monte-Carlo Integration. Alle Beispiele sind in der Open-Source Statistik-Software R gerechnet, wobei Teile des Programm-Codes explizit abgedruckt sind. An zahlreichen Beispielen aus Medizin, Epidemiologie und Genetik wird der Einsatz der Verfahren in der Praxis deutlich gemacht. Der Leser kann durch Bearbeitung von Übungsaufgaben am Ende jedes Kapitels (mit ausgewählten Lösungen auf der Website) den Stoff vertiefen.

Dieses Buch richtet sich in erster Linie an Studierende der Statistik, Mathematik und Informatik. Aber auch Interessierten aus Bereichen der Lebenswissenschaften, wie etwa der Biologie oder den Umweltwissenschaften wird es eine adäquate Einführung in die Methoden der statistischen Inferenz geben. Nötige Kenntnisse der Stochastik, Numerik und Analysis, die über ein elementares Niveau hinausgehen, sind in eigenen Anhängen beschrieben.

Additional indexing

Item Type:Monograph
Communities & Collections:04 Faculty of Medicine > Epidemiology, Biostatistics and Prevention Institute (EBPI)
Dewey Decimal Classification:610 Medicine & health
Language:German
Date:2008
Deposited On:09 Sep 2008 15:36
Last Modified:14 Sep 2016 13:36
Publisher:Spektrum Akademischer Verlag
Number of Pages:304
ISBN:978-3-8274-1939-2
Related URLs:http://www.recherche-portal.ch/primo_library/libweb/action/search.do?fn=search&mode=Advanced&vid=ZAD&vl%28186672378UI0%29=isbn&vl%281UI0%29=contains&vl%28freeText0%29=978-3-8274-1939-2

Download

Full text not available from this repository.

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations