UZH-Logo

Maintenance Infos

A worm rich in protein: quantitative, differential, and global proteomics in Caenorhabditis elegans


Schrimpf, S P; Hengartner, M O (2010). A worm rich in protein: quantitative, differential, and global proteomics in Caenorhabditis elegans. Journal of Proteomics, 73(11):2186-2197.

Abstract

The nematode Caenorhabditis elegans (C. elegans) has been used with much success to study a number of biological processes. Although mostly known for its powerful forward and reverse genetics, work from many different groups over the past years has allowed this model organism to develop into a respectable system for proteomics studies as well. Large-scale survey studies led to improved genome annotation and to the generation of proteome catalogs, which set the stage for subsequent targeted proteomics studies. A number of focused comparative studies contributed to a better understanding of insulin signaling, spermatogenesis, oogenesis, and differential gene expression during development. In addition, C. elegans subproteomes and posttranslational modifications like glycosylation and phosphorylation have been identified. Here we describe the history of C. elegans proteomics, and provide a survey of the different methods that have been applied for relative and absolute quantification in comparative and global protein profiling studies in the worm. These studies suggest that C. elegans will provide a rich trove for "worm proteomicists".

The nematode Caenorhabditis elegans (C. elegans) has been used with much success to study a number of biological processes. Although mostly known for its powerful forward and reverse genetics, work from many different groups over the past years has allowed this model organism to develop into a respectable system for proteomics studies as well. Large-scale survey studies led to improved genome annotation and to the generation of proteome catalogs, which set the stage for subsequent targeted proteomics studies. A number of focused comparative studies contributed to a better understanding of insulin signaling, spermatogenesis, oogenesis, and differential gene expression during development. In addition, C. elegans subproteomes and posttranslational modifications like glycosylation and phosphorylation have been identified. Here we describe the history of C. elegans proteomics, and provide a survey of the different methods that have been applied for relative and absolute quantification in comparative and global protein profiling studies in the worm. These studies suggest that C. elegans will provide a rich trove for "worm proteomicists".

Citations

11 citations in Web of Science®
11 citations in Scopus®
Google Scholar™

Altmetrics

Additional indexing

Item Type:Journal Article, refereed, further contribution
Communities & Collections:07 Faculty of Science > Institute of Molecular Life Sciences
Dewey Decimal Classification:570 Life sciences; biology
Language:English
Date:October 2010
Deposited On:09 Nov 2010 16:49
Last Modified:05 Apr 2016 14:18
Publisher:Elsevier
ISSN:1874-3919
Publisher DOI:10.1016/j.jprot.2010.03.014
PubMed ID:20398808

Download

Full text not available from this repository.View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations