UZH-Logo

Maintenance Infos

Polyurethane elastomer: a new material for the visualization of cadaveric blood vessels.


Meyer, E P; Beer, G M; Lang, A; Manestar, M; Krucker, T; Meier, S; Mihic-Probst, D; Groscurth, P (2007). Polyurethane elastomer: a new material for the visualization of cadaveric blood vessels. Clinical Anatomy, 20(4):448-454.

Abstract

A multitude of various materials are available for the visualization of cadaveric vessels, ranging from natural materials like gelatin and latex to synthetic materials like silicone rubber or acrylates. To achieve a detailed overview of the vascular architecture in microvascular studies in experimental flap surgery, the injected material should have low viscosity to assure perfusion of even the smallest vessels. In addition, the material ideally should have either no or only minimal shrinkage, and should harden within a reasonable time, but retain sufficient elasticity and resistance to withstand tearing off the delicate vessels during subsequent dissection or casting. Because none of the available injection materials adequately combines these attributes, we evaluated the polyurethane elastomer "PU4ii" in latissimus dorsi muscles as a new material for the visualization of cadaveric vessels in comparison with the frequently used silicone rubber. The dissection of vessels injected with PU4ii proved easy largely because of its exceptional hardness. Even if not visible before dissection, the completely perfused vessels were easily palpated in the surrounding fat or muscle tissue of the microsurgical latissimus dorsi model. Despite the significantly higher hardness of PU4ii over silicone rubber (98 Sh-A vs. 12 Sh-A), PU4ii proved enough elasticity (20-25 N/mm(2) E modulus) and a high tear resistance (64-68 N/mm vs. 15 N/mm) preventing breakage during dissection even within the smallest vessels. In contrast to silicone rubber (and latex or gelatin), the high corrosion resistance and form stability of PU4ii also allowed building of casts for qualitative examination by scanning electron microscopy and quantitative analysis of the vessel density using micro-computed tomography with accurate 3D representation. In this study we show that PU4ii has physical characteristics that make it a multi-purpose material that allows at the same breath an excellent gross visualization of the architecture of cadaveric blood vessels as well as a detailed evaluation of casts by modern microscopic and or radiologic tools. Thus, the new polyurethane elastomer PU4ii is in many respects superior to the widely used silicone rubber and can be strongly recommended as a visualization material for a comprehensive evaluation of cadaveric blood vessels in microsurgery.

A multitude of various materials are available for the visualization of cadaveric vessels, ranging from natural materials like gelatin and latex to synthetic materials like silicone rubber or acrylates. To achieve a detailed overview of the vascular architecture in microvascular studies in experimental flap surgery, the injected material should have low viscosity to assure perfusion of even the smallest vessels. In addition, the material ideally should have either no or only minimal shrinkage, and should harden within a reasonable time, but retain sufficient elasticity and resistance to withstand tearing off the delicate vessels during subsequent dissection or casting. Because none of the available injection materials adequately combines these attributes, we evaluated the polyurethane elastomer "PU4ii" in latissimus dorsi muscles as a new material for the visualization of cadaveric vessels in comparison with the frequently used silicone rubber. The dissection of vessels injected with PU4ii proved easy largely because of its exceptional hardness. Even if not visible before dissection, the completely perfused vessels were easily palpated in the surrounding fat or muscle tissue of the microsurgical latissimus dorsi model. Despite the significantly higher hardness of PU4ii over silicone rubber (98 Sh-A vs. 12 Sh-A), PU4ii proved enough elasticity (20-25 N/mm(2) E modulus) and a high tear resistance (64-68 N/mm vs. 15 N/mm) preventing breakage during dissection even within the smallest vessels. In contrast to silicone rubber (and latex or gelatin), the high corrosion resistance and form stability of PU4ii also allowed building of casts for qualitative examination by scanning electron microscopy and quantitative analysis of the vessel density using micro-computed tomography with accurate 3D representation. In this study we show that PU4ii has physical characteristics that make it a multi-purpose material that allows at the same breath an excellent gross visualization of the architecture of cadaveric blood vessels as well as a detailed evaluation of casts by modern microscopic and or radiologic tools. Thus, the new polyurethane elastomer PU4ii is in many respects superior to the widely used silicone rubber and can be strongly recommended as a visualization material for a comprehensive evaluation of cadaveric blood vessels in microsurgery.

Citations

13 citations in Web of Science®
14 citations in Scopus®
Google Scholar™

Altmetrics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > University Hospital Zurich > Institute of Surgical Pathology
07 Faculty of Science > Institute of Zoology (former)
Dewey Decimal Classification:570 Life sciences; biology
590 Animals (Zoology)
Uncontrolled Keywords:cadaver dissection, blood vessels, vascular injection, polyurethane elastomer, corrosion cast
Language:English
Date:1 May 2007
Deposited On:11 Feb 2008 12:14
Last Modified:05 Apr 2016 12:13
Publisher:Wiley-Blackwell
ISSN:0897-3806
Publisher DOI:10.1002/ca.20403
PubMed ID:17072868

Download

Full text not available from this repository.View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations