UZH-Logo

Maintenance Infos

Protein robustness promotes evolutionary innovations on large evolutionary time-scales


Ferrada, E; Wagner, A (2008). Protein robustness promotes evolutionary innovations on large evolutionary time-scales. Proceedings of the Royal Society B: Biological Sciences, 275(1643):1595-1602.

Abstract

Recent laboratory experiments suggest that a molecule's ability to evolve neutrally is important for its ability to generate evolutionary innovations. In contrast to laboratory experiments, life unfolds on time-scales of billions of years. Here, we ask whether a molecule's ability to evolve neutrally-a measure of its robustness-facilitates evolutionary innovation also on these large time-scales. To this end, we use protein designability, the number of sequences that can adopt a given protein structure, as an estimate of the structure's ability to evolve neutrally. Based on two complementary measures of functional diversity-catalytic diversity and molecular functional diversity in gene ontology-we show that more robust proteins have a greater capacity to produce functional innovations. Significant associations among structural designability, folding rate and intrinsic disorder also exist, underlining the complex relationship of the structural factors that affect protein evolution.

Recent laboratory experiments suggest that a molecule's ability to evolve neutrally is important for its ability to generate evolutionary innovations. In contrast to laboratory experiments, life unfolds on time-scales of billions of years. Here, we ask whether a molecule's ability to evolve neutrally-a measure of its robustness-facilitates evolutionary innovation also on these large time-scales. To this end, we use protein designability, the number of sequences that can adopt a given protein structure, as an estimate of the structure's ability to evolve neutrally. Based on two complementary measures of functional diversity-catalytic diversity and molecular functional diversity in gene ontology-we show that more robust proteins have a greater capacity to produce functional innovations. Significant associations among structural designability, folding rate and intrinsic disorder also exist, underlining the complex relationship of the structural factors that affect protein evolution.

Citations

37 citations in Web of Science®
41 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

35 downloads since deposited on 17 Sep 2008
19 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Department of Biochemistry
07 Faculty of Science > Department of Biochemistry

Special Collections > SystemsX.ch
Special Collections > SystemsX.ch > Research, Technology and Development Projects > YeastX
Dewey Decimal Classification:570 Life sciences; biology
Language:English
Date:July 2008
Deposited On:17 Sep 2008 12:59
Last Modified:05 Apr 2016 12:28
Publisher:Royal Society of London
ISSN:0962-8452
Publisher DOI:10.1098/rspb.2007.1617
PubMed ID:18430649
Permanent URL: http://doi.org/10.5167/uzh-3742

Download

[img]
Preview
Content: Accepted Version
Filetype: PDF
Size: 1MB
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations