UZH-Logo

Maintenance Infos

Compound poisson approximation via information functionals


Barbour, A D; Johnson, O; Kontoyiannis, I; Madiman, M (2010). Compound poisson approximation via information functionals. Electronic Journal of Probability, 15(42):1344-1369.

Abstract

An information-theoretic development is given for the problem of compound Poisson approximation, which parallels earlier treatments for Gaussian and Poisson approximation. Nonasymptotic bounds are derived for the distance between the distribution of a sum of independent integer-valued random variables and an appropriately chosen compound Poisson law. In the case where all summands have the same conditional distribution given that they are non-zero, a bound on the relative entropy distance between their sum and the compound Poisson distribution is derived, based on the data-processing property of relative entropy and earlier Poisson approximation results. When the summands have arbitrary distributions, corresponding bounds are derived in terms of the total variation distance. The main technical ingredient is the introduction of two "information functionals,'' and the analysis of their properties. These information functionals play a role analogous to that of the classical Fisher information in normal approximation. Detailed comparisons are made between the resulting inequalities and related bounds.

An information-theoretic development is given for the problem of compound Poisson approximation, which parallels earlier treatments for Gaussian and Poisson approximation. Nonasymptotic bounds are derived for the distance between the distribution of a sum of independent integer-valued random variables and an appropriately chosen compound Poisson law. In the case where all summands have the same conditional distribution given that they are non-zero, a bound on the relative entropy distance between their sum and the compound Poisson distribution is derived, based on the data-processing property of relative entropy and earlier Poisson approximation results. When the summands have arbitrary distributions, corresponding bounds are derived in terms of the total variation distance. The main technical ingredient is the introduction of two "information functionals,'' and the analysis of their properties. These information functionals play a role analogous to that of the classical Fisher information in normal approximation. Detailed comparisons are made between the resulting inequalities and related bounds.

Citations

12 citations in Web of Science®
13 citations in Scopus®
Google Scholar™

Downloads

71 downloads since deposited on 23 Dec 2010
20 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Institute of Mathematics
Dewey Decimal Classification:510 Mathematics
Language:English
Date:31 August 2010
Deposited On:23 Dec 2010 13:53
Last Modified:05 Apr 2016 14:24
Publisher:Institute of Mathematical Statistics
ISSN:1083-6489
Official URL:http://www.math.washington.edu/~ejpecp/EjpVol15/paper42.abs.html
Related URLs:http://arxiv.org/abs/1004.3692
Permanent URL: https://doi.org/10.5167/uzh-38381

Download

[img]
Preview
Filetype: PDF (Verlags-PDF)
Size: 1MB
[img]
Preview
Content: Accepted Version
Filetype: PDF
Size: 292kB

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations