UZH-Logo

Maintenance Infos

Preservation of fire-derived carbon compounds and sorptive stabilisation promote the accumulation of organic matter in black soils of the Southern Alps


Eckmeier, E; Egli, M; Schmidt, M W I; Schlumpf, N; Nötzli, M; Minikus-Stary, N; Hagedorn, F (2010). Preservation of fire-derived carbon compounds and sorptive stabilisation promote the accumulation of organic matter in black soils of the Southern Alps. Geoderma, 159(1-2):147-155.

Abstract

Cryptopodzols are black soils that occur under forests dominated by chestnut trees (Castanea sativa) in Southern Switzerland. Their soil organic carbon (SOC) stocks reach an average of 150 t C ha-1 and are thus among the highest of European forest soils. We investigated the processes leading to the accumulation and stabilisation of SOC in these soils by analysing three Cryptopodzols and one Cambisol for charred organic matter content (macrocharcoal and BPCA), the amounts of Fe and Al, and the colour and SOC content in bulk soil and density fractions. The results showed that charred organic matter produced by frequent ␣res in the area for more than 10,000 years is highly abundant in Cryptopodzols: the stocks of macrocharcoal and BPCA-C amount to up to 31 t ha-1 and 17 t ha-1, respectively. These high amounts of charred organic matter are responsible for the dark soil colour and high SOC concentrations that are, however, also closely related to Fep and Alp concentrations. We concluded that the occurrence of charcoal across the whole pro␣les of Cryptopodzols seems to be the dominating factor, although both the formation of organo-metallic or organo-mineral complexes in the subsoil and the high abundance and stability of charred organic matter are responsible for the high SOC stocks in Cryptopodzols.

Cryptopodzols are black soils that occur under forests dominated by chestnut trees (Castanea sativa) in Southern Switzerland. Their soil organic carbon (SOC) stocks reach an average of 150 t C ha-1 and are thus among the highest of European forest soils. We investigated the processes leading to the accumulation and stabilisation of SOC in these soils by analysing three Cryptopodzols and one Cambisol for charred organic matter content (macrocharcoal and BPCA), the amounts of Fe and Al, and the colour and SOC content in bulk soil and density fractions. The results showed that charred organic matter produced by frequent ␣res in the area for more than 10,000 years is highly abundant in Cryptopodzols: the stocks of macrocharcoal and BPCA-C amount to up to 31 t ha-1 and 17 t ha-1, respectively. These high amounts of charred organic matter are responsible for the dark soil colour and high SOC concentrations that are, however, also closely related to Fep and Alp concentrations. We concluded that the occurrence of charcoal across the whole pro␣les of Cryptopodzols seems to be the dominating factor, although both the formation of organo-metallic or organo-mineral complexes in the subsoil and the high abundance and stability of charred organic matter are responsible for the high SOC stocks in Cryptopodzols.

Citations

22 citations in Web of Science®
24 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

53 downloads since deposited on 29 Dec 2010
14 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Institute of Geography
Dewey Decimal Classification:910 Geography & travel
Uncontrolled Keywords:Density separation
Language:English
Date:2010
Deposited On:29 Dec 2010 13:42
Last Modified:05 Apr 2016 14:24
Publisher:Elsevier
ISSN:0016-7061
Publisher DOI:10.1016/j.geoderma.2010.07.006
Official URL:http://www.sciencedirect.com/science/article/B6V67-50RFMXP-1/2/ebf9cc94f38aa5d271d2b6f37cb0d8cd
Permanent URL: http://doi.org/10.5167/uzh-38404

Download

[img]
Filetype: PDF - Registered users only
Size: 943kB
View at publisher
[img]
Preview
Content: Accepted Version
Filetype: PDF
Size: 2MB

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations