Quick Search:

uzh logo
Browse by:

Zurich Open Repository and Archive

Maintenance: Tuesday, July the 26th 2016, 07:00-10:00

ZORA's new graphical user interface will be relaunched (For further infos watch out slideshow ZORA: Neues Look & Feel). There will be short interrupts on ZORA Service between 07:00am and 10:00 am. Please be patient.

Permanent URL to this publication: http://dx.doi.org/10.5167/uzh-3844

El-Shemerly, M; Hess, D; Pyakurel, A K; Moselhy, S; Ferrari, S (2008). ATR-dependent pathways control hEXO1 stability in response to stalled forks. Nucleic Acids Research, 36(2):511-519.

View at publisher


Nucleases play important roles in DNA synthesis, recombination and repair. We have previously shown that human exonuclease 1 (hEXO1) is phosphorylated in response to agents stalling DNA replication and that hEXO1 consequently undergoes ubiquitination and degradation in a proteasome-dependent manner. In the present study, we have addressed the identity of the pathway transducing stalled-replication signals to hEXO1. Using chemical inhibitors, RNA interference, ATM- and ATR-deficient cell lines we have concluded that hEXO1 phosphorylation is ATR-dependent. By means of mass spectrometry, we have identified the sites of phosphorylation in hEXO1 in undamaged cells and in cells treated with hydroxyurea (HU). hEXO1 is phosphorylated at nine basal sites and three additional sites are induced by HU treatment. Analysis of single- and multiple-point mutants revealed that mutation to Ala of the three HU-induced sites of phosphorylation partially rescued HU-dependent degradation of hEXO1 and additionally stabilized the protein in non-treated cells. We have raised an antibody to pS(714), an HU-induced site of the S/T-Q type, and we provide evidence that S(714) is phosphorylated upon HU but not IR treatment. The antibody may be a useful tool to monitor signal transduction events triggered by stalled DNA replication.


32 citations in Web of Science®
35 citations in Scopus®
Google Scholar™



115 downloads since deposited on 17 Sep 2008
10 downloads since 12 months

Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Institute of Molecular Cancer Research
07 Faculty of Science > Institute of Molecular Cancer Research
Dewey Decimal Classification:570 Life sciences; biology
Deposited On:17 Sep 2008 12:43
Last Modified:05 Apr 2016 12:28
Publisher:Oxford University Press
Additional Information:Full final text Oxford Journal
Publisher DOI:10.1093/nar/gkm1052
PubMed ID:18048416

Users (please log in): suggest update or correction for this item

Repository Staff Only: item control page