UZH-Logo

Maintenance Infos

Correctors for some asymptotic problems


Chipot, M; Senoussi, G (2010). Correctors for some asymptotic problems. Proceedings of the Steklov Institute of Mathematics, 270(1):263-277.

Abstract

In the theory of anisotropic singular perturbation boundary value problems, the solution u ɛ does not converge, in the H 1-norm on the whole domain, towards some u 0. In this paper we construct correctors to have good approximations of u ɛ in the H 1-norm on the whole domain. Since the anisotropic singular perturbation problems can be connected to the study of the asymptotic behaviour of problems defined in cylindrical domains becoming unbounded in some directions, we transpose our results for such problems.

Abstract

In the theory of anisotropic singular perturbation boundary value problems, the solution u ɛ does not converge, in the H 1-norm on the whole domain, towards some u 0. In this paper we construct correctors to have good approximations of u ɛ in the H 1-norm on the whole domain. Since the anisotropic singular perturbation problems can be connected to the study of the asymptotic behaviour of problems defined in cylindrical domains becoming unbounded in some directions, we transpose our results for such problems.

Citations

3 citations in Web of Science®
4 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

42 downloads since deposited on 23 Dec 2010
23 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Institute of Mathematics
Dewey Decimal Classification:510 Mathematics
Language:English
Date:2010
Deposited On:23 Dec 2010 16:03
Last Modified:05 Apr 2016 14:24
Publisher:MAIK Nauka
ISSN:0081-5438
Publisher DOI:https://doi.org/10.1134/S0081543810030211

Download

[img]
Preview
Content: Accepted Version
Filetype: PDF
Size: 1MB
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations