UZH-Logo

Maintenance Infos

Phenylketonuria


Blau, N; van Spronsen, F J; Levy, H L (2010). Phenylketonuria. Lancet, 376(9750):1417-1427.

Abstract

Phenylketonuria is the most prevalent disorder caused by an inborn error in aminoacid metabolism. It results from mutations in the phenylalanine hydroxylase gene. Phenotypes can vary from a very mild increase in blood phenylalanine concentrations to a severe classic phenotype with pronounced hyperphenylalaninaemia, which, if untreated, results in profound and irreversible mental disability. Neonatal screening programmes identify individuals with phenylketonuria. The initiation of a phenylalanine-restricted diet very soon after birth prevents most of the neuropsychological complications. However, the diet is difficult to maintain and compliance is often poor, especially in adolescents, young adults, and pregnant women. Tetrahydrobiopterin stimulates phenylalanine hydroxylase activity in about 20% of patients, and in those patients serves as a useful adjunct to the phenylalanine-restricted diet because it increases phenylalanine tolerance and allows some dietary freedom. Possible future treatments include enzyme substitution with phenylalanine ammonia lyase, which degrades phenylalanine, and gene therapy to restore phenylalanine hydroxylase activity.

Phenylketonuria is the most prevalent disorder caused by an inborn error in aminoacid metabolism. It results from mutations in the phenylalanine hydroxylase gene. Phenotypes can vary from a very mild increase in blood phenylalanine concentrations to a severe classic phenotype with pronounced hyperphenylalaninaemia, which, if untreated, results in profound and irreversible mental disability. Neonatal screening programmes identify individuals with phenylketonuria. The initiation of a phenylalanine-restricted diet very soon after birth prevents most of the neuropsychological complications. However, the diet is difficult to maintain and compliance is often poor, especially in adolescents, young adults, and pregnant women. Tetrahydrobiopterin stimulates phenylalanine hydroxylase activity in about 20% of patients, and in those patients serves as a useful adjunct to the phenylalanine-restricted diet because it increases phenylalanine tolerance and allows some dietary freedom. Possible future treatments include enzyme substitution with phenylalanine ammonia lyase, which degrades phenylalanine, and gene therapy to restore phenylalanine hydroxylase activity.

Citations

202 citations in Web of Science®
10 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

2 downloads since deposited on 14 Jan 2011
0 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, further contribution
Communities & Collections:04 Faculty of Medicine > Center for Integrative Human Physiology
04 Faculty of Medicine > University Children's Hospital Zurich > Medical Clinic
Dewey Decimal Classification:570 Life sciences; biology
610 Medicine & health
Language:English
Date:2010
Deposited On:14 Jan 2011 16:56
Last Modified:05 Apr 2016 14:25
Publisher:Elsevier
ISSN:0140-6736
Publisher DOI:10.1016/S0140-6736(10)60961-0
PubMed ID:20971365
Permanent URL: http://doi.org/10.5167/uzh-38589

Download

[img]
Filetype: PDF - Registered users only
Size: 1MB
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations