UZH-Logo

Maintenance Infos

Maximum Diameter Measurements of Aortic Aneurysms on Axial CT Images After Endovascular Aneurysm Repair: Sufficient for Follow-up?


Baumueller, Stephan; Nguyen, Thi D; Goetti, Robert P; Lachat, Mario; Seifert, Burkhardt; Pfammatter, Thomas; Frauenfelder, Thomas (2011). Maximum Diameter Measurements of Aortic Aneurysms on Axial CT Images After Endovascular Aneurysm Repair: Sufficient for Follow-up? Cardiovascular and Interventional Radiology, 34(6):1182-1189.

Abstract

PURPOSE: To assess the accuracy of maximum diameter measurements of aortic aneurysms after endovascular aneurysm repair (EVAR) on axial computed tomographic (CT) images in comparison to maximum diameter measurements perpendicular to the intravascular centerline for follow-up by using three-dimensional (3D) volume measurements as the reference standard. MATERIALS AND METHODS: Forty-nine consecutive patients (73 ± 7.5 years, range 51-88 years), who underwent EVAR of an infrarenal aortic aneurysm were retrospectively included. Two blinded readers twice independently measured the maximum aneurysm diameter on axial CT images performed at discharge, and at 1 and 2 years after intervention. The maximum diameter perpendicular to the centerline was automatically measured. Volumes of the aortic aneurysms were calculated by dedicated semiautomated 3D segmentation software (3surgery, 3mensio, the Netherlands). Changes in diameter of 0.5 cm and in volume of 10% were considered clinically significant. Intra- and interobserver agreements were calculated by intraclass correlations (ICC) in a random effects analysis of variance. The two unidimensional measurement methods were correlated to the reference standard. RESULTS: Intra- and interobserver agreements for maximum aneurysm diameter measurements were excellent (ICC = 0.98 and ICC = 0.96, respectively). There was an excellent correlation between maximum aneurysm diameters measured on axial CT images and 3D volume measurements (r = 0.93, P < 0.001) as well as between maximum diameter measurements perpendicular to the centerline and 3D volume measurements (r = 0.93, P < 0.001). CONCLUSION: Measurements of maximum aneurysm diameters on axial CT images are an accurate, reliable, and robust method for follow-up after EVAR and can be used in daily routine.

PURPOSE: To assess the accuracy of maximum diameter measurements of aortic aneurysms after endovascular aneurysm repair (EVAR) on axial computed tomographic (CT) images in comparison to maximum diameter measurements perpendicular to the intravascular centerline for follow-up by using three-dimensional (3D) volume measurements as the reference standard. MATERIALS AND METHODS: Forty-nine consecutive patients (73 ± 7.5 years, range 51-88 years), who underwent EVAR of an infrarenal aortic aneurysm were retrospectively included. Two blinded readers twice independently measured the maximum aneurysm diameter on axial CT images performed at discharge, and at 1 and 2 years after intervention. The maximum diameter perpendicular to the centerline was automatically measured. Volumes of the aortic aneurysms were calculated by dedicated semiautomated 3D segmentation software (3surgery, 3mensio, the Netherlands). Changes in diameter of 0.5 cm and in volume of 10% were considered clinically significant. Intra- and interobserver agreements were calculated by intraclass correlations (ICC) in a random effects analysis of variance. The two unidimensional measurement methods were correlated to the reference standard. RESULTS: Intra- and interobserver agreements for maximum aneurysm diameter measurements were excellent (ICC = 0.98 and ICC = 0.96, respectively). There was an excellent correlation between maximum aneurysm diameters measured on axial CT images and 3D volume measurements (r = 0.93, P < 0.001) as well as between maximum diameter measurements perpendicular to the centerline and 3D volume measurements (r = 0.93, P < 0.001). CONCLUSION: Measurements of maximum aneurysm diameters on axial CT images are an accurate, reliable, and robust method for follow-up after EVAR and can be used in daily routine.

Citations

7 citations in Web of Science®
6 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

241 downloads since deposited on 28 Dec 2010
24 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > University Hospital Zurich > Clinic for Cardiovascular Surgery
04 Faculty of Medicine > University Hospital Zurich > Clinic for Diagnostic and Interventional Radiology
04 Faculty of Medicine > Epidemiology, Biostatistics and Prevention Institute (EBPI)
Dewey Decimal Classification:610 Medicine & health
Language:English
Date:2011
Deposited On:28 Dec 2010 10:08
Last Modified:05 Apr 2016 14:25
Publisher:Springer
ISSN:0174-1551
Additional Information:The final publication is available at www.springerlink.com
Publisher DOI:https://doi.org/10.1007/s00270-010-9992-x
PubMed ID:20945067
Permanent URL: https://doi.org/10.5167/uzh-38693

Download

[img]
Preview
Content: Accepted Version
Filetype: PDF
Size: 1MB
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations