UZH-Logo

Maintenance Infos

Instructive cytokine signals in dendritic cell lineage commitment


Schmid, M A; Kingston, D; Boddupalli, S; Manz, M G (2010). Instructive cytokine signals in dendritic cell lineage commitment. Immunological Reviews, 234(1):32-44.

Abstract

Clarifying the signals that lead to dendritic cell (DC) development and identifying cellular intermediates on their way to DC differentiation are essential steps to understand the dynamic regulation of number, localization, and functionality of these cells. In the past decade, much knowledge on cytokines, transcription factors, and successive progenitors involved in steady-state and demand-adapted DC development was gained. From the stage of multipotent progenitors, DCs are generated from Flt3(+) intermediates, irrespective of lymphoid or myeloid commitment, making fms-related tyrosine kinase 3 ligand one of the major regulators for DC development. Additional key cytokines involved are granulocyte-macrophage colony-stimulating factor (GM-CSF) and M-CSF, with each being essential for particular DC subsets and leading to specific activation of downstream transcription factors. In this review, we seek to draw an integrative view on how instructive cytokine signals acting on intermediate progenitors might lead to the generation of specific DC subsets in steady-state and during inflammation. We hypothesize that the lineage potential of a progenitor might be determined by the set of cytokine receptors expressed that make it responsive to further receive lineage instructive signals. Commitment to a certain lineage might consequently occur when lineage-relevant cytokine receptors are further upregulated and others for alternative lineages are lost. Along this line, we emphasize the role that diverse microenvironments have in influencing the generation of DC subsets with specific functions throughout the body.

Clarifying the signals that lead to dendritic cell (DC) development and identifying cellular intermediates on their way to DC differentiation are essential steps to understand the dynamic regulation of number, localization, and functionality of these cells. In the past decade, much knowledge on cytokines, transcription factors, and successive progenitors involved in steady-state and demand-adapted DC development was gained. From the stage of multipotent progenitors, DCs are generated from Flt3(+) intermediates, irrespective of lymphoid or myeloid commitment, making fms-related tyrosine kinase 3 ligand one of the major regulators for DC development. Additional key cytokines involved are granulocyte-macrophage colony-stimulating factor (GM-CSF) and M-CSF, with each being essential for particular DC subsets and leading to specific activation of downstream transcription factors. In this review, we seek to draw an integrative view on how instructive cytokine signals acting on intermediate progenitors might lead to the generation of specific DC subsets in steady-state and during inflammation. We hypothesize that the lineage potential of a progenitor might be determined by the set of cytokine receptors expressed that make it responsive to further receive lineage instructive signals. Commitment to a certain lineage might consequently occur when lineage-relevant cytokine receptors are further upregulated and others for alternative lineages are lost. Along this line, we emphasize the role that diverse microenvironments have in influencing the generation of DC subsets with specific functions throughout the body.

Citations

64 citations in Web of Science®
66 citations in Scopus®
Google Scholar™

Altmetrics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > University Hospital Zurich > Clinic for Hematology
Dewey Decimal Classification:610 Medicine & health
Language:English
Date:March 2010
Deposited On:06 Jan 2011 10:46
Last Modified:05 Apr 2016 14:25
Publisher:Wiley-Blackwell
ISSN:0105-2896
Publisher DOI:10.1111/j.0105-2896.2009.00877.x
PubMed ID:20193010

Download

Full text not available from this repository.View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations