UZH-Logo

Maintenance Infos

IL-12 p80-dependent macrophage recruitment primes the host for increased survival following a lethal respiratory viral infection


Gunsten, S; Mikols, C L; Grayson, M H; Schwendener, R; Agapov, E; Tidwell, R M; Cannon, C L; Brody, S L; Walter, M J (2009). IL-12 p80-dependent macrophage recruitment primes the host for increased survival following a lethal respiratory viral infection. Immunology, 126(4):500-513.

Abstract

A protective immune response to a respiratory viral infection requires a series of coordinated cellular and molecular responses. We have previously demonstrated that increased expression of airway epithelial cell interleukin (IL)-12 p80, a macrophage chemoattractant, is associated with human respiratory viral infection and mediates post-viral mortality in the mouse. To better understand the role of IL-12 p80-dependent macrophage chemotaxis in mediating viral immunity, we generated a transgenic mouse strain utilizing a promoter to drive IL-12 p40 gene expression in the airway epithelium. This transgenic strain secreted biologically active IL-12 p80 in a lung-specific manner, and demonstrated a selective increase in the number of resident, unactivated airway macrophages at baseline. Following infection with a sublethal dose of mouse parainfluenza virus type 1 (Sendai virus), the transgenic mice demonstrated an earlier peak and decline in the number of airway inflammatory cells. The transgenic mice were resistant to a lethal dose of virus and this viral resistance was dependent on the increased number of airway macrophages at baseline as partial depletion prior to infection abrogated this phenotype. The survival advantage in the transgenic mice was independent of viral load but was associated with a more rapid decline in the number of airway inflammatory cells and concentrations of multiple chemokines including the CC chemokine ligand 2 (CCL2)/JE, CCL3/macrophage inflammatory protein (MIP)-1α, CCL4/MIP-1β, and CCL5/RANTES. Collectively, these results suggest that IL-12 p80-driven increases in the number of resident airway macrophages prime the host for a protective immune response that can confer increased survival following a lethal respiratory viral infection.

A protective immune response to a respiratory viral infection requires a series of coordinated cellular and molecular responses. We have previously demonstrated that increased expression of airway epithelial cell interleukin (IL)-12 p80, a macrophage chemoattractant, is associated with human respiratory viral infection and mediates post-viral mortality in the mouse. To better understand the role of IL-12 p80-dependent macrophage chemotaxis in mediating viral immunity, we generated a transgenic mouse strain utilizing a promoter to drive IL-12 p40 gene expression in the airway epithelium. This transgenic strain secreted biologically active IL-12 p80 in a lung-specific manner, and demonstrated a selective increase in the number of resident, unactivated airway macrophages at baseline. Following infection with a sublethal dose of mouse parainfluenza virus type 1 (Sendai virus), the transgenic mice demonstrated an earlier peak and decline in the number of airway inflammatory cells. The transgenic mice were resistant to a lethal dose of virus and this viral resistance was dependent on the increased number of airway macrophages at baseline as partial depletion prior to infection abrogated this phenotype. The survival advantage in the transgenic mice was independent of viral load but was associated with a more rapid decline in the number of airway inflammatory cells and concentrations of multiple chemokines including the CC chemokine ligand 2 (CCL2)/JE, CCL3/macrophage inflammatory protein (MIP)-1α, CCL4/MIP-1β, and CCL5/RANTES. Collectively, these results suggest that IL-12 p80-driven increases in the number of resident airway macrophages prime the host for a protective immune response that can confer increased survival following a lethal respiratory viral infection.

Citations

11 citations in Web of Science®
11 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

5 downloads since deposited on 14 Oct 2008
0 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Institute of Molecular Cancer Research
07 Faculty of Science > Institute of Molecular Cancer Research
Dewey Decimal Classification:570 Life sciences; biology
Language:English
Date:April 2009
Deposited On:14 Oct 2008 15:30
Last Modified:05 Apr 2016 12:28
Publisher:Wiley-Blackwell
ISSN:0019-2805
Publisher DOI:10.1111/j.1365-2567.2008.02923.x
PubMed ID:18783467
Permanent URL: http://doi.org/10.5167/uzh-3897

Download

[img]
Filetype: PDF - Registered users only
Size: 1MB
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations