UZH-Logo

Three-dimensional distribution and evolution of permafrost temperatures in idealized high-mountain topography


Noetzli, J; Gruber, S; Kohl, T; Salzmann, N; Haeberli, W (2007). Three-dimensional distribution and evolution of permafrost temperatures in idealized high-mountain topography. Journal of Geophysical Research, 112:F02S13.

Abstract

Permafrost degradation is regarded as a crucial factor influencing the stability of steep rockwalls in alpine areas. Discernment of zones of fast temperature changes requires knowledge about the temperature distribution and evolution at and below the surface of steep rock. In complex high-mountain topography, strong lateral heat fluxes result from topography and variable surface temperatures and profoundly influence the subsurface thermal field. To investigate such three-dimensional effects, numerical experimentation was conducted using typical idealized geometries of high-mountain topography, such as ridges, peaks, or spurs. The approach combines a surface energy balance model with a three-dimensional ground heat conduction scheme to investigate belowground temperature distribution and permafrost occurrence in high-mountain topography. Time-dependent simulations are based on scenario data gained from regional climate models. Results indicate complex three-dimensional patterns of temperature distribution and heat flow density below mountainous topography for equilibrium conditions, which are additionally perturbed by transient effects. Permafrost occurs at many locations where temperatures at the surface do not indicate it, e.g., on the south face of ridges or below the edges of a peak. The modeling tools applied have potential for a number of studies in high mountains addressing questions related to permafrost distribution and evolution at depth in real topographies, for instance, the reanalysis of temperature-related instabilities.

Permafrost degradation is regarded as a crucial factor influencing the stability of steep rockwalls in alpine areas. Discernment of zones of fast temperature changes requires knowledge about the temperature distribution and evolution at and below the surface of steep rock. In complex high-mountain topography, strong lateral heat fluxes result from topography and variable surface temperatures and profoundly influence the subsurface thermal field. To investigate such three-dimensional effects, numerical experimentation was conducted using typical idealized geometries of high-mountain topography, such as ridges, peaks, or spurs. The approach combines a surface energy balance model with a three-dimensional ground heat conduction scheme to investigate belowground temperature distribution and permafrost occurrence in high-mountain topography. Time-dependent simulations are based on scenario data gained from regional climate models. Results indicate complex three-dimensional patterns of temperature distribution and heat flow density below mountainous topography for equilibrium conditions, which are additionally perturbed by transient effects. Permafrost occurs at many locations where temperatures at the surface do not indicate it, e.g., on the south face of ridges or below the edges of a peak. The modeling tools applied have potential for a number of studies in high mountains addressing questions related to permafrost distribution and evolution at depth in real topographies, for instance, the reanalysis of temperature-related instabilities.

Citations

62 citations in Web of Science®
70 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

18 downloads since deposited on 25 Mar 2009
15 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Institute of Geography
Dewey Decimal Classification:910 Geography & travel
Language:English
Date:2007
Deposited On:25 Mar 2009 13:12
Last Modified:02 Jun 2016 07:09
Publisher:American Geophysical Union
ISSN:0148-0227
Publisher DOI:10.1029/2006JF000545
Permanent URL: http://doi.org/10.5167/uzh-3937

Download

[img]
Preview
Content: Published Version
Language: English
Filetype: PDF
Size: 6MB
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations