UZH-Logo

Maintenance Infos

Edge detection in microscopy images using curvelets.


Gebäck, T; Koumoutsakos, P (2009). Edge detection in microscopy images using curvelets. BMC bioinformatics, 10:75.

Abstract

BACKGROUND: Despite significant progress in imaging technologies, the efficient detection of edges and elongated features in images of intracellular and multicellular structures acquired using light or electron microscopy is a challenging and time consuming task in many laboratories. RESULTS: We present a novel method, based on the discrete curvelet transform, to extract a directional field from the image that indicates the location and direction of the edges. This directional field is then processed using the non-maximal suppression and thresholding steps of the Canny algorithm to trace along the edges and mark them. Optionally, the edges may then be extended along the directions given by the curvelets to provide a more connected edge map. We compare our scheme to the Canny edge detector and an edge detector based on Gabor filters, and show that our scheme performs better in detecting larger, elongated structures possibly composed of several step or ridge edges. CONCLUSION: The proposed curvelet based edge detection is a novel and competitive approach for imaging problems. We expect that the methodology and the accompanying software will facilitate and improve edge detection in images available using light or electron microscopy.

BACKGROUND: Despite significant progress in imaging technologies, the efficient detection of edges and elongated features in images of intracellular and multicellular structures acquired using light or electron microscopy is a challenging and time consuming task in many laboratories. RESULTS: We present a novel method, based on the discrete curvelet transform, to extract a directional field from the image that indicates the location and direction of the edges. This directional field is then processed using the non-maximal suppression and thresholding steps of the Canny algorithm to trace along the edges and mark them. Optionally, the edges may then be extended along the directions given by the curvelets to provide a more connected edge map. We compare our scheme to the Canny edge detector and an edge detector based on Gabor filters, and show that our scheme performs better in detecting larger, elongated structures possibly composed of several step or ridge edges. CONCLUSION: The proposed curvelet based edge detection is a novel and competitive approach for imaging problems. We expect that the methodology and the accompanying software will facilitate and improve edge detection in images available using light or electron microscopy.

Citations

24 citations in Web of Science®
42 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

64 downloads since deposited on 26 Nov 2010
12 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:Special Collections > SystemsX.ch
Special Collections > SystemsX.ch > Research, Technology and Development Projects > WingX
Dewey Decimal Classification:570 Life sciences; biology
Language:English
Date:2009
Deposited On:26 Nov 2010 15:56
Last Modified:05 Apr 2016 14:26
Publisher:UNSPECIFIED
ISSN:1471-2105
Free access at:PubMed ID. An embargo period may apply.
Publisher DOI:https://doi.org/10.1186/1471-2105-10-75
PubMed ID:19257905
Permanent URL: https://doi.org/10.5167/uzh-39541

Download

[img]
Preview
Filetype: PDF
Size: 1MB
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations