UZH-Logo

Maintenance Infos

Virtual faces as a tool to study emotion recognition deficits in schizophrenia


Dyck, M; Winbeck, M; Leiberg, S; Chen, Y; Mathiak, K (2010). Virtual faces as a tool to study emotion recognition deficits in schizophrenia. Psychiatry Research, 179(3):247-252.

Abstract

Studies investigating emotion recognition in patients with schizophrenia predominantly presented photographs of facial expressions. Better control and higher flexibility of emotion displays could be afforded by virtual reality (VR). VR allows the manipulation of facial expression and can simulate social interactions in a controlled and yet more naturalistic environment. However, to our knowledge, there is no study that systematically investigated whether patients with schizophrenia show the same emotion recognition deficits when emotions are expressed by virtual as compared to natural faces. Twenty schizophrenia patients and 20 controls rated pictures of natural and virtual faces with respect to the basic emotion expressed (happiness, sadness, anger, fear, disgust, and neutrality). Consistent with our hypothesis, the results revealed that emotion recognition impairments also emerged for emotions expressed by virtual characters. As virtual in contrast to natural expressions only contain major emotional features, schizophrenia patients already seem to be impaired in the recognition of basic emotional features. This finding has practical implication as it supports the use of virtual emotional expressions for psychiatric research: the ease of changing facial features, animating avatar faces, and creating therapeutic simulations makes validated artificial expressions perfectly suited to study and treat emotion recognition deficits in schizophrenia.

Studies investigating emotion recognition in patients with schizophrenia predominantly presented photographs of facial expressions. Better control and higher flexibility of emotion displays could be afforded by virtual reality (VR). VR allows the manipulation of facial expression and can simulate social interactions in a controlled and yet more naturalistic environment. However, to our knowledge, there is no study that systematically investigated whether patients with schizophrenia show the same emotion recognition deficits when emotions are expressed by virtual as compared to natural faces. Twenty schizophrenia patients and 20 controls rated pictures of natural and virtual faces with respect to the basic emotion expressed (happiness, sadness, anger, fear, disgust, and neutrality). Consistent with our hypothesis, the results revealed that emotion recognition impairments also emerged for emotions expressed by virtual characters. As virtual in contrast to natural expressions only contain major emotional features, schizophrenia patients already seem to be impaired in the recognition of basic emotional features. This finding has practical implication as it supports the use of virtual emotional expressions for psychiatric research: the ease of changing facial features, animating avatar faces, and creating therapeutic simulations makes validated artificial expressions perfectly suited to study and treat emotion recognition deficits in schizophrenia.

Citations

18 citations in Web of Science®
19 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

78 downloads since deposited on 21 Jan 2011
18 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:03 Faculty of Economics > Department of Economics
08 University Research Priority Programs > Foundations of Human Social Behavior: Altruism and Egoism
Dewey Decimal Classification:170 Ethics
330 Economics
Language:English
Date:2010
Deposited On:21 Jan 2011 15:28
Last Modified:05 Apr 2016 14:26
Publisher:Elsevier
ISSN:0165-1781
Publisher DOI:10.1016/j.psychres.2009.11.004
PubMed ID:20483465
Permanent URL: http://doi.org/10.5167/uzh-39677

Download

[img]
Filetype: PDF - Registered users only
Size: 1MB
View at publisher
[img]
Preview
Content: Accepted Version
Filetype: PDF
Size: 1MB

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations