Quick Search:

is currently disabled due to reindexing of the ZORA database. Please use Advanced Search.
uzh logo
Browse by:
bullet
bullet
bullet
bullet

Zurich Open Repository and Archive 

Shcherbakov, D; Akbergenov, R; Mattina, T; Sander, P; Andersson, D I; Böttger, E C (2010). Directed mutagenesis of Mycobacterium smegmatis 16S rRNA to reconstruct the in-vivo evolution of aminoglycoside resistance in Mycobacterium tuberculosis. Molecular Microbiology, 77(4):830-840.

Full text not available from this repository.

Abstract

Summary Drug resistance in Mycobacteriumtuberculosis is a global problem, with major consequences for treatment and public health systems. As the emergence and spread of drug-resistant tuberculosis epidemics is largely influenced by the impact of the resistance mechanism on bacterial fitness, we wished to investigate whether compensatory evolution occurs in drug resistant clinical isolates of M. tuberculosis. By combining information from molecular epidemiology studies of drug resistant clinical M. tuberculosis isolates with genetic reconstructions and measurements of aminoglycoside susceptibility and fitness in M. smegmatis, we have reconstructed a plausible pathway for how aminoglycoside resistance develops in clinical isolates of M. tuberculosis. Thus, we show by reconstruction experiments that base changes in the highly conserved A-site of 16S rRNA that (i) cause aminoglycoside resistance, (ii) confer a high fitness cost and (iii) destabilize a stem-loop structure, are associated with a particular compensatory point mutation that restores rRNA secondary structure and bacterial fitness, while maintaining to a large extent the drug resistant phenotype. The same types of resistance and associated mutations can be found in M. tuberculosis in clinical isolates, suggesting that compensatory evolution contributes to the spread of drug-resistant tuberculosis disease.

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Institute of Medical Microbiology
DDC:570 Life sciences; biology
610 Medicine & health
Language:English
Date:2010
Deposited On:18 Jan 2011 12:37
Last Modified:27 Nov 2013 17:23
Publisher:Wiley-Blackwell
ISSN:0950-382X
Free access at:PubMed ID. An embargo period may apply.
Publisher DOI:10.1111/j.1365-2958.2010.07218.x
PubMed ID:20545852
Citations:Web of Science®. Times Cited: 26
Google Scholar™
Scopus®. Citation Count: 31

Users (please log in): suggest update or correction for this item

Repository Staff Only: item control page