UZH-Logo

Maintenance Infos

Comprehensive paternity assignment: genotype, spatial location and social status in song sparrows, Melospiza Melodia


Sardell, R J; Keller, L F; Arcese, P; Bucher, T B; Reid, J M (2010). Comprehensive paternity assignment: genotype, spatial location and social status in song sparrows, Melospiza Melodia. Molecular Ecology, 19(19):4352-4364.

Abstract

Comprehensive, accurate paternity assignment is critical to answering numerous questions in evolutionary ecology. Yet, most studies of species with extra-pair paternity (EPP) fail to assign sires to all offspring. Common limitations include incomplete and biased sampling of offspring and males, particularly with respect to male location and social status, potentially biasing estimated patterns of paternity. Studies that achieve comprehensive sampling and paternity assignment are therefore required. Accordingly, we genotyped virtually all males and > 99% of 6-day-old offspring over 16 years in a song sparrow (Melospiza melodia) population and used three complementary statistical methodologies to attempt complete paternity assignment for all 2207 offspring. Assignments were highly consistent across maximum likelihood methods that used solely genotype data, and heuristic and integrated Bayesian analyses that included data describing individual locations. Sires were assigned to > 99% of all genotyped offspring with >= 95% confidence, revealing an EPP rate of c. 28%. Extra-pair sires primarily occupied territories neighbouring their extra-pair offspring; spatial location was therefore highly informative for paternity assignment. EPP was biased towards paired territorial males, although unpaired territorial and floater males sired c. 13% of extra-pair offspring. Failing to sample and include unpaired males as candidate sires would therefore substantially reduce assignment rates. These analyses demonstrate the integration of genetic and ecological information to achieve comprehensive paternity assignment and direct biological insight, illustrate the potential biases that common forms of incomplete sampling could have on estimated patterns of EPP, and provide an essential basis for understanding the evolutionary causes and consequences of EPP.

Comprehensive, accurate paternity assignment is critical to answering numerous questions in evolutionary ecology. Yet, most studies of species with extra-pair paternity (EPP) fail to assign sires to all offspring. Common limitations include incomplete and biased sampling of offspring and males, particularly with respect to male location and social status, potentially biasing estimated patterns of paternity. Studies that achieve comprehensive sampling and paternity assignment are therefore required. Accordingly, we genotyped virtually all males and > 99% of 6-day-old offspring over 16 years in a song sparrow (Melospiza melodia) population and used three complementary statistical methodologies to attempt complete paternity assignment for all 2207 offspring. Assignments were highly consistent across maximum likelihood methods that used solely genotype data, and heuristic and integrated Bayesian analyses that included data describing individual locations. Sires were assigned to > 99% of all genotyped offspring with >= 95% confidence, revealing an EPP rate of c. 28%. Extra-pair sires primarily occupied territories neighbouring their extra-pair offspring; spatial location was therefore highly informative for paternity assignment. EPP was biased towards paired territorial males, although unpaired territorial and floater males sired c. 13% of extra-pair offspring. Failing to sample and include unpaired males as candidate sires would therefore substantially reduce assignment rates. These analyses demonstrate the integration of genetic and ecological information to achieve comprehensive paternity assignment and direct biological insight, illustrate the potential biases that common forms of incomplete sampling could have on estimated patterns of EPP, and provide an essential basis for understanding the evolutionary causes and consequences of EPP.

Citations

41 citations in Web of Science®
37 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

3 downloads since deposited on 27 Jan 2011
0 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Institute of Evolutionary Biology and Environmental Studies
Dewey Decimal Classification:570 Life sciences; biology
590 Animals (Zoology)
Uncontrolled Keywords:CERVUS; MasterBayes; mating system; polyandry; polygyny
Language:English
Date:October 2010
Deposited On:27 Jan 2011 13:19
Last Modified:05 Apr 2016 14:28
Publisher:Wiley-Blackwell
ISSN:0962-1083
Funders:NERC ; Royal Society ; NSERC ; Swiss National Science Foundation
Additional Information:The definitive version is available at www.blackwell-synergy.com
Publisher DOI:10.1111/j.1365-294X.2010.04805.x
PubMed ID:20819155
Other Identification Number:ISI:000282180500023
Permanent URL: http://doi.org/10.5167/uzh-39980

Download

[img]
Filetype: PDF - Registered users only
Size: 1MB
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations