UZH-Logo

Maintenance Infos

Refinement of metre perception - training increases hierarchical metre processing


Geiser, E; Sandmann, P; Jäncke, Lutz; Meyer, Martin (2010). Refinement of metre perception - training increases hierarchical metre processing. The European journal of neuroscience, 32(11):1979-1885.

Abstract

Auditory metre perception refers to the ability to extract a temporally regular pulse and an underlying hierarchical structure of perceptual accents from a sequence of tones. Pulse perception is widely present in humans, and can be measured by the temporal expectancy for prospective tones, which listeners generate when presented with a metrical rhythm. We tested whether musical expertise leads to an increased perception and representation of the hierarchical structure of a metrical rhythm. Musicians and musical novices were tested in a mismatch negativity (MMN) paradigm for their sensitivity to perceptual accents on tones of the same pulse level (metre-congruent deviant) and on tones of a lower hierarchical level (metre-incongruent deviant). The difference between these two perceptual accents was more pronounced in the MMNs of the musicians than in those of the non-musicians. That is, musical expertise includes increased sensitivity to metre, specifically to its hierarchical structure. This enhanced higher-order temporal pattern perception makes musicians ideal models for investigating neural correlates of metre perception and, potentially, of related abstract pattern perception. Finally, our data show that small differences in sensitivity to higher-order patterns can be captured by means of an MMN paradigm.

Auditory metre perception refers to the ability to extract a temporally regular pulse and an underlying hierarchical structure of perceptual accents from a sequence of tones. Pulse perception is widely present in humans, and can be measured by the temporal expectancy for prospective tones, which listeners generate when presented with a metrical rhythm. We tested whether musical expertise leads to an increased perception and representation of the hierarchical structure of a metrical rhythm. Musicians and musical novices were tested in a mismatch negativity (MMN) paradigm for their sensitivity to perceptual accents on tones of the same pulse level (metre-congruent deviant) and on tones of a lower hierarchical level (metre-incongruent deviant). The difference between these two perceptual accents was more pronounced in the MMNs of the musicians than in those of the non-musicians. That is, musical expertise includes increased sensitivity to metre, specifically to its hierarchical structure. This enhanced higher-order temporal pattern perception makes musicians ideal models for investigating neural correlates of metre perception and, potentially, of related abstract pattern perception. Finally, our data show that small differences in sensitivity to higher-order patterns can be captured by means of an MMN paradigm.

Citations

25 citations in Web of Science®
24 citations in Scopus®
Google Scholar™

Altmetrics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:06 Faculty of Arts > Institute of Psychology
Dewey Decimal Classification:150 Psychology
Language:English
Date:2010
Deposited On:20 Dec 2010 14:24
Last Modified:05 Apr 2016 14:28
Publisher:Wiley-Blackwell
ISSN:0953-816X
Publisher DOI:https://doi.org/10.1111/j.1460-9568.2010.07462.x
PubMed ID:21050278

Download

Full text not available from this repository.View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations