Quick Search:

uzh logo
Browse by:

Zurich Open Repository and Archive

Maintenance: Tuesday, July the 26th 2016, 07:00-10:00

ZORA's new graphical user interface will be relaunched (For further infos watch out slideshow ZORA: Neues Look & Feel). There will be short interrupts on ZORA Service between 07:00am and 10:00 am. Please be patient.

Permanent URL to this publication: http://dx.doi.org/10.5167/uzh-40139

Meienberg, J; Rohrbach, M; Neuenschwander, S; Spanaus, K; Giunta, C; Alonso, S; Arnold, E; Henggeler, C; Regenass, S; Patrignani, A; Azzarello-Burri, S; Steiner, B; Nygren, A; Carrel, T; Steinmann, B; Matyas, G (2010). Hemizygous deletion of COL3A1, COL5A2, and MSTN causes a complex phenotype with aortic dissection: a lesson for and from true haploinsufficiency. European Journal of Human Genetics, 18(12):1315-1321.

[img] PDF - Registered users only
View at publisher


Aortic dilatation/dissection (AD) can occur spontaneously or in association with genetic syndromes, such as Marfan syndrome (MFS; caused by FBN1 mutations), MFS type 2 and Loeys-Dietz syndrome (associated with TGFBR1/TGFBR2 mutations), and Ehlers-Danlos syndrome (EDS) vascular type (caused by COL3A1 mutations). Although mutations in FBN1 and TGFBR1/TGFBR2 account for the majority of AD cases referred to us for molecular genetic testing, we have obtained negative results for these genes in a large cohort of AD patients, suggesting the involvement of additional genes or acquired factors. In this study we assessed the effect of COL3A1 deletions/duplications in this cohort. Multiplex ligation-dependent probe amplification (MLPA) analysis of 100 unrelated patients identified one hemizygous deletion of the entire COL3A1 gene. Subsequent microarray analyses and sequencing of breakpoints revealed the deletion size of 3,408,306 bp at 2q32.1q32.3. This deletion affects not only COL3A1 but also 21 other known genes (GULP1, DIRC1, COL5A2, WDR75, SLC40A1, ASNSD1, ANKAR, OSGEPL1, ORMDL1, LOC100129592, PMS1, MSTN, C2orf88, HIBCH, INPP1, MFSD6, TMEM194B, NAB1, GLS, STAT1, and STAT4), mutations in three of which (COL5A2, SLC40A1, and MSTN) have also been associated with an autosomal dominant disorder (EDS classical type, hemochromatosis type 4, and muscle hypertrophy). Physical and laboratory examinations revealed that true haploinsufficiency of COL3A1, COL5A2, and MSTN, but not that of SLC40A1, leads to a clinical phenotype. Our data not only emphasize the impact/role of COL3A1 in AD patients but also extend the molecular etiology of several disorders by providing hitherto unreported evidence for true haploinsufficiency of the underlying gene.


10 citations in Web of Science®
10 citations in Scopus®
Google Scholar™



4 downloads since deposited on 04 Jan 2011
0 downloads since 12 months

Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > University Children's Hospital Zurich > Medical Clinic
04 Faculty of Medicine > University Hospital Zurich > Institute of Clinical Chemistry
04 Faculty of Medicine > Institute of Medical Genetics
04 Faculty of Medicine > Functional Genomics Center Zurich
04 Faculty of Medicine > Institute of Medical Molecular Genetics
Dewey Decimal Classification:570 Life sciences; biology
610 Medicine & health
540 Chemistry
Deposited On:04 Jan 2011 14:41
Last Modified:05 Apr 2016 14:28
Publisher:Nature Publishing Group
Publisher DOI:10.1038/ejhg.2010.105
PubMed ID:20648054

Users (please log in): suggest update or correction for this item

Repository Staff Only: item control page